

Investigation of CR distributions using gamma-rays

Ruizhi Yang
USTC
In collaboration with Liu Bing, Li Guangxing, Sun Xiaona, et.al

Outlines

Large scale distributions

Implication to CR propagation models

Small scale inhomogeneity

Propagation of GCRs

- Diffusion in an extended halo
- Primary injection spectrum (e.g, from DSA)
 Q (E) ~ E^{-γ}
- Confinement time (leaky box or diffusion model) $\tau(E) \sim E^{-\delta}$
- Steady state primary spectrum $N(E) \sim Q(E)\tau(E) \sim E^{-(\Upsilon+\delta)}$
- Steady state secondary spectrum $N(E) \sim Q(E)\tau^2(E) \sim E^{-(\Upsilon+2\delta)}$
- Secondary/primary ratio $\sim E^{-\delta}$ (B/C observations)

Diffuse gamma-rays

CR Radial distributions

Yang et.al 2016

Inhomogeneity in large scale, both in spectra and in densities:

- Softening towards outer Galaxy
- Peak of density at 4-6 kpc ring

CR Radial distributions

distant GMCs

- Rice et.al (2016) have identified thousands of Molecular Clouds in the Galaxy
- Possible to measure CR density in each position of the Galaxy.

Aharonian et.al 2019

Distant GMCs

Aharonian et.al 2019

LHAASO Results

Zhang et.al 2023 A new component?

A hard component associated with HII gas?

- HII gas were ignored in former modeling
- HII can trace star forming activity, may related to CR sources (such as cocoons near YMCs).
- Different Morphology in HII and total gas column can be used to separate different component

Liu et.al A&A 659, A101 (2022)

A hard component associated with HII gas?

- After considering HII component the CR distributions looks "more homogeneous"
- The former inhomogeneity is simply due to the mixing of "true" diffuse (sea) component with hard "source" (island) regions

Liu et.al A&A 659, A101 (2022)

Possible sources related to those HII region

The HII regions are linked naturally to the young massive star clusters (YMCs). Below is the case for NGC 3603. left :gamma, middle: HII

CR cocoon/bubble near accelerator

- CR distribution derived by gamma-ray profile and gas distributions
- All four sources (Wd1, Wd2, Cygnus cocoon, GC) show 1/r distribution of CRs
- In diffusion, 1/r profile implies a continuous injection (in the lifetime of clusters)
- The limited age and wind power reveal a rather small D(E), 100 times smaller than the ISM value

Aharonian et.al 2019

An extreame example: LHAASO Cygnus bubble

a size of more than 150 pc

Slow diffusion (also) in pulsar Halos

Self confinement near CR sources

 Possible energy independent escape from Source regions (normal assumption if CR streaming dominate the magnetic turbulence, e.g. Krumholz 2019)

Slow diffusion region near source

- A natural explanation for the hardening of B/C ratio?
- An extra component in diffuse emission

Grammage inside cocoon/bubble: X=m_H*n_H*c*T, T~L**2/D, L :size of cocoon

 $X\sim1.5 \text{ g/cm}^2(I/50pc)^{**}2^*(2e26 \text{ cm}^2/\text{s/D})$

See also Yang & Aharonian 2020 PhysRevD.100.063020 Also Sun et.al 2307.02372

Possible link to dynamical structures

- hard Gamma-ray emissions associated with HII region
- related to CR cocoons/bubbles near YMC.
- Slow diffusion therein and produce additional secondaries.
 (similar to two-zone Halo-disk model)

Are these CR cocoons coincide with the gas structures dubbed as Super bubbles?

Zucker et.al (2022) Nature

Possible link to dynamical structures

Molecular clouds are formed in the boundary of these super bubbles.

Would be interesting target for LHAASO.

VHE CR will hit them earlier than low energy CRs, very hard spectrum expected.

Alternative scenario

Cowsik 2023

- Energy independent diffusion in the ISM
- Energy dependent diffusion near source

Future: IACTs in LHAASO site (LACT)

6m telescopes

8 X 4 arrays in LHAASO site

Prototype nearly finished (University of Science and Technology of China

First light soon!

Predicted sensitivities

Synergy with LHAASO

Detailed morphology study of PeVatrons, TeV halo, PWN...

* Joint reconstruction with LHAASO cab further improve the sensitivity

Inhomogeneity in small scale

- Taurus-Perseus region
- low gamma-ray emissivities in Highest density regions

Dust opacity (gas distribution)

gamma residual (CR density)

Inhomogeneity in small scale

- LECR cannot penetrate into clumps.
- Lower Ionization rate therein?

Smaller ionization rate?

NAL, 868:40 (13pp), 2018 November 20

Albertsson, Kauffmann, &

bserved sources with measured H_2 column densities and ζ_{CR} . The symbols specify the type of object in the observations as follows

Slower diffusion inside clumps

Also 100 times smaller than ISM in GeV

Magnetic mirroring can hardly explain

Nature Astronomy 7, 351–358 (2023)

High Precision Telescope for MeV Gamma Rays

Design and goals

- 50cm cubic TPC, 3-5 bar, weight ~ 1400 kg
- Resistive-Micromegas (or double-MM) gas amplification.
- Collection on x-y strips, 0.8 mm pitch.
- CdZnTe/Scintillator +Si-PM for energy measurement .
- Energy region: 0.1MeV -1GeV.
- Resolution: 1.2° @MeV, 0.5° @100 MeV.

MeGaT sensitivities

- —— Very preliminary simulation result without pair conversion
- --- Rough estimation by taking pair into account

Four identical 50cm cubic detection vessels

Perfect performance on spatial and energy resolution are required for the TPC and calorimeter

Conclusion

 Gamma-ray observations bring new hints for CR propagation.

Slow diffusion near source region.

· Slow diffusion in dense molecular clumps.