

Meson Structure Program at EicC

Weizhi Xiong ^p₃ Shandong University On Be $t = (p_1 - p_3)^2 = (p_4 - p_2)^2$ ive Physics

> EicC 8^{th} CDR Meeting Aug. $17^{th} - 20^{th}$ 2024

p_\

- Introduction
- Meson structure program at EicC
- Strength and complementarity of EicC
- Summary

Physics Motivation

- π/K form factors and structure

 - kaon: replaces one light quark with a heavier strange quark
 - Both are Nambu-Goldstone bosons
- A simpler problem in QFT than that associated with the nucleon
- Important test ground for many theoritical preditions: Lattice QCD, Dyson-Schiwinger method and many more

Physics Motivation

C. D. Roberts, D. G. Richards, T. Horn and L. Chang, PPNP 120, 103883 (2021)

- Important in checking the **Emergent Hadron Mass (EHM)** mechanism and the interplay between EHM and Higgs Boson mechanism
- Gain unique insight on EHM through meson form factor (FF) and structure functions (SF)

T. Horn and C. D. Roberts. J. Phys. G 43 (2016) 7, 073001

L. Chang et al. Phys. Rev. Lett. 111 (2013) 14, 141802

Proton mass budget

1.5

1.0

0.5

0.0

0.0

*ψ*π(**λ**)

Accessing Meson Structure – Elastic Scat. and Drell-Yan

Meson Form Factor

- Elastic scattering of high energy meson beam from atomic electron target
 - Model independent way to measure form factor
 - Limited at low Q², need TeV meson to reach Q² = ~1GeV²
 - $r_{\pi} = 0.657 \pm 0.012$ fm
 - $r_{\rm K} = 0.560 \pm 0.031$ fm

Meson Structure Function

- Drell-Yan process: quark-antiquark annihilation between pion's and proton's, virtual photon decays into lepton pair
- Information about the quark-gluon momentum fractions

$$\frac{d^2\sigma}{dx_{\pi}dx_N} = \frac{4\pi\alpha_{em}^2}{9M_{\gamma}^2} \sum_q e_q^2 [q_{\pi}(x_{\pi})\bar{q}_N(x_N) + \bar{q}_{\pi}(x_{\pi})q_N(x_N)]$$

C. D. Roberts, D. G. Richards, T. Horn and L. Chang, PPNP 120, 103883 (2021)

Accessing Meson Structure - Sullivan Process

Sullivan processes at small t (<0.6/0.9 GeV²) is sensitive to pion and kaon structures.

Exclusive processes for meson form factor measurements.

Leading baryon semi-inclusive deep inelastic scattering

processes for meson structure measurements

Essential processes to access meson structures at JLab, EIC and EicC

Meson From Factor from Sullivan Process

- V 1901
- > Generally, one can apply L-T separation (like JLab) and isolate σ_L , where the meson factors live

> Measure two CS at same Q² and W, and solve for σ_L and σ_T

$$\sigma_1 = \sigma_T + \epsilon_1 \sigma_L$$

$$\sigma_2 = \sigma_T + \epsilon_2 \sigma_L$$

$$\frac{\Delta \sigma_L}{\sigma_L} = \frac{1}{(\epsilon_1 - \epsilon_2)} \frac{1}{\sigma_L} \sqrt{\Delta \sigma_1^2 + \Delta \sigma_2^2}.$$

- > $\Delta \varepsilon$ amplifies uncertainty, ideally nedd $\Delta \delta^2 \ge 0.2$ (need small center-of-mass energy), difficult for EIC
- > Alternatively, one may also use models to isolate σ_{L} (with additional uncertainties) = $\frac{1+Q^2}{1+Q^2}$

> L-T separation possible at EicC, but definitely not the entire kinematic region Weizhi Xiong

[Horn et al., PRL 97, (2006) 192001]

Meson From Factor from Sullivan Process

60

10

0_0.3 •

-0.3

<u>0</u>0.3

6

-0.3

R =

Meson Structure Function from Sullivan Process

G. Xie et al., Chin. Phys. C 45, 053002 (2021)

One has to measure the final baryon in this case

Weizhi Xiong

Existing World Data on Meson Structure (Pion)

Existing World Data on Meson Structure (Pion)

Slide Courtesy of Chia-Yu Hsieh from Hadron 12th Workshop on Hadron Physics and Opportunities Worldwide, Dalian

11

Existing World Data on Meson Structure (Kaon) Very Few Data for Kaon!

- Forseable data only up to Q² ~ 6 GeV², analysis in progress
- For kaon PDF: Only 8 data points measured 40 years ago at CERN
- No structure function data yet with Sullivan process

Meson Structure Measurement with EicC

- Scattered electron and meson very well covered by central detector
- Acceptance and resolution studied extensively for central detector, fast simulation exist
 - > Eff. > 95% for both particles

3.5 GeV (e) x 20 GeV (p)

14

Meson Structure Measurement with EicC

- "Spectator" neutron and Λ move very close to the initial p-beam, very difficult to detect, need farforward detectors
- Pion FF and SF require ZDC for neutron detection
- Kaon FF and SF need all detectors in far-forward region for Λ :
 - > $\Lambda \rightarrow \pi^0 n$ with 36% chance (neutral decay)
 - > $\Lambda \rightarrow \pi^- p$ with 64% chance (charged decay)

Current Design for EicC Far-Forward (FF) Region

Roman Pot Station:

- Located inside the ion beam pipe
- Positive Charged particle with E ~ E_{beam}
- $5 \text{ mr } \theta < 16 \text{ mr around ion beam}$

Zero degree calorimeter (ZDC):

• Neutrons and photons with $\theta < 15$ mr around ion beam

Endcap Dipole Tracker (EDT):

• Detect charged particles and photons with $15mr < \theta < 60mr$ around ion beam

Off Momentum Detector (OMD):

 Detect positive charged fragments (spectators) with 0.4 < p/p_{beam} < 0.8

Current Design for EicC Far-Forward (FF) Region

- 1. neutral channel: $\Lambda \rightarrow n\pi^0$, with BR 36%
- 2. charged channel: $\Lambda \rightarrow p\pi^-$, with BR 64%

For kaon structure:

- Detect proton and π^- from Λ decay
- Detect γ from Λ decay

For kaon structure:

• Detect proton from Λ decay

For kaon structure:

• Detect proton from Λ decay

For pion structure:

Detect neutron spectator

For kaon structure:

• Detect neutron and γ from Λ decay

Forward Λ Detection

- Crucial for kaon form factor and structure-function study using Sullivan process: $ep \rightarrow e\Lambda K^+/X$
- As go mostly forward, as well as their decay products
- Potentially very good complementary to EIC kaon structure measurement
 - Most Λ s decay before reaching far-forward region
 - Probably much better acceptance for charged decay channel

3.5 GeV e X 20 GeV p

Forward **A** Detection

- Λs go mostly forward, as well as their decay products
 - 1. neutral channel: $\Lambda \rightarrow n\pi^0$, with BR 36%
 - 2. charged channel: $\Lambda \rightarrow p\pi^-$, with BR 64%
- Require all FF detectors work collectively
- overall efficiency:~ 40%

Weizhi Xiong

Pion FF Projections

- energy setting: 3.5 GeV e x 20 GeV p
- Integrated luminosity: 50 fb⁻¹
- Include full detector acceptance
- 100% uncertainty in $R = \sigma_T / \sigma_L$ from model subtraction
- 2.5% point-to-point syst. uncertainty 12% scaling syst. uncertainty
- For kaon measurement, additional 5% uncertainty from Σ^0 background
- Impact on pion:
 - Provide valueable cross-check for JLab and EIC results
- Impact on kaon:
 - Extend Q² coverage from ~GeV² to ~25 GeV²

Pion Structure Function Projection

- energy setting: 3.5 GeV e x 20 GeV p
- Integrated luminosity: 50 fb⁻¹
- Include full detector acceptance
- include syst. from detector resolution
- Acceptance uncertainty 5% for pion and 10% for kaon SF

Strength And Complementarity of EicC Forward A detection for Kaon Structure

1. Better overall Λ detection efficiency

- At US-EIC, energy is too high so that many Λ decays after their far-forward detectors
- At EicC, most of Λ decays before FF detectors

From EIC yellow report

Table 8.18: $e + p \rightarrow e' + X + \Lambda$: Percentage of decayed Λ 's in different detection ranges.

E _{beams}	$Z_{vtx} < 5m$	$5m < Z_{vtx} < 30m$	$Z_t ext v t x > 30 \mathrm{m}$
5 GeV on 41 GeV	83.0%	16.6%	0.4%
10 GeV on 100 GeV	52.1%	46.7%	1.2%
10 GeV on 130 GeV	41.8%	54.2%	4%
18 GeV on 275 GeV	23.3%	56.2%	20.5 %

3. Benefit of collider mode for SF measurement

- JLab energy only marginal for kaon SF measurement
- For fixed target mode, need to measure very soft Λ using recoil detector, difficult due to high background rate

2.Better efficiency for charged decay $\Lambda { ightarrow} p \pi^-$

- Λ decays 64% of the time into pπ[−]
 ▷ better stat.
- Charged particle resolution typically better than neutral particles
 - better resolution
 - better background rejection

Strength And Complementarity of EicC Potential of L-T separation

$$2\pi \frac{d^2 \sigma}{dt d\phi} = \epsilon \frac{d\sigma_{\rm L}}{dt} + \frac{d\sigma_{\rm T}}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{\rm LT}}{dt} \cos \phi$$
$$+\epsilon \frac{d\sigma_{\rm TT}}{dt} \cos 2\phi.$$
$$\frac{\Delta \sigma_L}{\sigma_L} = \frac{1}{(\epsilon_1 - \epsilon_2)} \frac{1}{\sigma_L} \sqrt{\Delta \sigma_1^2 + \Delta \sigma_2^2}.$$

- L-T separation typically require $\Delta \varepsilon > 0.2$, not a problem at JLab
- At high \sqrt{s} , ε is very close to 1
- Need $\sqrt{s} \sim 10$ GeV to reach $\varepsilon < 0.8$, not possible at EIC
- Reachable at EicC, projection study ongoing

 ε diffrence between 5x26 GeV runs and 2.8x12 GeV runs

Weizhi Xiong

Additional Improvement to Think About

ZDC: only device capable of neutron detection for EicC, 15mrad acceptance not enough in many cases

2. A second roman pot station here to improve mom. reso.?

Working iteratively with the accelerator folks on these improvements

1. Additional compact HCal after the EDT?

Summary

- Meson structure: ideal test ground for many physics production, essential for checking EHM
- EicC offers a unique and complemetary meson structure program to JLab and EIC
 - CM energy ~16.7 GeV, in between JLab and EIC
 - Might be the best place to measure kaon structure using Sullivan process
 - Very few space-like Kaon structure data!
- Full simulation for EicC central and far-forward detectors
- Projection studies done for meson FF and SF, would like to also extract meson PDFs but... not enough time
- Sullivan process can also used to meson Meson GPD
- Special thanks to Prof. Huber, Prof. Horn and Prof. Roberts for many helpful discussions