Summary for SIDIS Working Group

The 8th EicC CDR Workshop Aug. 17th-20th, 2024 @ Qingdao, Shandong

Tianbo Liu (对天博)

Key Laboratory of Particle Physics and Particle Irradiation (MOE) Institute of Frontier and Interdisciplinary Science, Shandong University Southern Center for Nuclear-Science Theory, IMP, CAS

On behalf of the EicC semi-inclusive working group

Nucleon Spin Structure

Proton spin puzzle

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s \sim 0.3$$

Spin decomposition

$$J = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

JAM17: $\Delta\Sigma=0.36\pm0.09$

JAM Collaboration, PRL 119, 132001 (2017).

Quark spin only contributes a small fraction to the nucleon spin.

J. Ashman et al., PLB 206, 364 (1988); NP B328, 1 (1989).

Gluon spin from LQCD: $S_g = 0.251(47)(16)$

50% of total proton spin Y.-B. Yang *et al.* (χQCD Collaboration), PRL 118, 102001 (2017).

Semi-inclusive Deep Inelastic Scattering

Semi-inclusive DIS: a final state hadron (P_h) is identified

- enable us to explore the emergence of color neutral hadrons from colored quarks/gluons
- flavor dependence by selecting different types of observed hadrons: pions, kaons, ...
- a large momentum transfer *Q* provides a short-distance probe
- an additional and adjustable momentum scale P_{h_T}
- cold nuclear effects via eA SIDIS

SIDIS Kinematic Regions

Sketch of kinematic regions of the produced hadron

レネスス(青岛)

Structure Functions

SIDIS differential cross section

in terms of 18 structure functions

 $F_{ABC}(x_{B}, z, P_{hT}^{2}, Q^{2})$

B: nucleon polarization C: virtual photon polarization $\frac{\mathrm{d}\sigma}{\mathrm{d}x_B \,\mathrm{d}y \,\mathrm{d}z \,\mathrm{d}P_{hT}^2 \,\mathrm{d}\phi_h \,\mathrm{d}\phi_S}$ $= \frac{\alpha^2}{x_B y Q^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x_B}\right)$ $\times \left\{ F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi_h} \cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h} \cos2\phi_h + \lambda_e \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi_h} \sin\phi_h \right\}$ $+S_{L}\left[\sqrt{2\epsilon(1+\epsilon)}F_{UL}^{\sin\phi_{h}}\sin\phi_{h}+\epsilon F_{UL}^{\sin2\phi_{h}}\sin2\phi_{h}\right]+\lambda_{e}S_{L}\left[\sqrt{1-\epsilon^{2}}F_{LL}+\sqrt{2\epsilon(1-\epsilon)}F_{LL}^{\cos\phi_{h}}\cos\phi_{h}\right]$ $+S_T \left[\left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \epsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \sin(\phi_h - \phi_S) + \epsilon F_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) \right]$ $+\epsilon F_{UT}^{\sin(3\phi_h-\phi_S)}\sin(3\phi_h-\phi_S) + \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{\sin\phi_S}\sin\phi_S + \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{\sin(2\phi_h-\phi_S)}\sin(2\phi_h-\phi_S)$ $+ \lambda_e S_T \left[\sqrt{1 - \epsilon^2} F_{LT}^{\cos(\phi_h - \phi_S)} \cos\left(\phi_h - \phi_S\right) \right]$ $+\sqrt{2\epsilon(1-\epsilon)}F_{LT}^{\cos\phi_{S}}\cos\phi_{S}+\sqrt{2\epsilon(1-\epsilon)}F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\cos\left(2\phi_{h}-\phi_{S}\right)\right\}$

A: lepton polarization

hadron plane

 P_h

 ϕ_S

Leading Twist TMDs

Electron-ion Collider in China

- energy in c.m.: $15 \sim 20 \text{ GeV}$
- luminosity: $\geq 2 \times 10^{33} \text{ cm}^{-2} \cdot \text{s}^{-1}$
- electron beam: 3.5 GeV, polarization $\sim 80\%$
- proton beam: 20 GeV, polarization $\sim 70\%$
- other available polarized ion beams: d, ³He⁺⁺
- available unpolarized ion beams: ⁷Li³⁺, ¹²C⁶⁺, ⁴⁰Ca²⁰⁺, ¹⁹⁷Au⁷⁹⁺, ²⁰⁸Pb⁸²⁺, ²³⁸U⁹²⁺

Complementary Kinematic Coverage

R.G. Milner and R. Ent, Visualizing the proton 2022

D.P. Anderle, T.J. Hou, H. Xing, M. Yan, C.-P. Yuan and Y. Zhao, JHEP 08 (2021) 034.

Tianbo Liu

Impact Study: Helicity Distributions

D.P. Anderle, T.J. Hou, H. Xing, M. Yan, C.-P. Yuan and Y. Zhao, JHEP 08 (2021) 034.

Impact Study: Transversity Distributions

Transverse single spin asymmetry (Collins asymmetry): $A_{UT}^{\sin(\phi_h + \phi_S)} \sim h_1(x, k_T) \otimes H_1(z, p_T)$

C. Zeng, H. Dong, T. Liu, P. Sun, Y. Zhao, PRD 109 (2024) 056002.

Impact Study: Collins Fragmentation

Transverse single spin asymmetry (Collins asymmetry): $A_{UT}^{\sin(\phi_h + \phi_S)} \sim h_1(x, k_T) \otimes H_1(z, p_T)$

C. Zeng, 11. Dung, 1. Liu, 1. Sun, Y. Znau, 1 ND 107 (2024) 030002.

Impact Study: Tensor Charge

$$\langle P, S | \bar{\psi}^q i \sigma^{\mu\nu} \gamma_5 \psi^q | P, S \rangle = g_T^q \bar{u}(P, S) i \sigma^{\mu\nu} \gamma_5 u(P, S)$$

$$g_T^q = \int_0^1 [h_1^q(x) - h_1^{\bar{q}}(x)] \, dx$$

C. Zeng, H. Dong, T. Liu, P. Sun, Y. Zhao, PRD 109 (2024) 056002.

Impact Study: Tensor Charge

$$\langle P, S | \bar{\psi}^q i \sigma^{\mu\nu} \gamma_5 \psi^q | P, S \rangle = g_T^q \bar{u}(P, S) i \sigma^{\mu\nu} \gamma_5 u(P, S)$$

C. Zeng, H. Dong, T. Liu, P. Sun, Y. Zhao, PRD 109 (2024) 056002.

Impact Study: Sivers Function

Transverse single spin asymmetry (Sivers asymmetry): $A_{UT}^{\sin(\phi_h - \phi_S)} \sim f_{1T}^{\perp}(x, k_T) \otimes D_1(z, p_T)$

C. Zeng, T. Liu, P. Sun, Y. Zhao, Phys. Rev. D 106 (2022) 094039.

レダスる(青岛)

Impact Study: Sivers Function

Transverse single spin asymmetry (Sivers asymmetry): $A_{UT}^{\sin(\phi_h - \phi_S)} \sim f_{1T}^{\perp}(x, k_T) \otimes D_1(z, p_T)$

C. Zeng, T. Liu, P. Sun, Y. Zhao, Phys. Rev. D 106 (2022) 094039.

Impact Study: Trans-helicity Distribution

K. Yang, T. Liu, P. Sun, Y. Zhao, B.-Q. Ma, Phys. Rev. D (2024).

eA Collision at EicC

Nuclear TMD PDF

M. Alrashed, Z.-B. Kang, J. Terry, H. Xing, C. Zhang, axXiv:2312.09226.

Jet Transport in Nuclear Medium

Jet transport parameter

P. Ru, Z.-B. Kang, E. Wang, H. Xing, B.-W. Zhang, Phys. Rev. D 103 (2021) L031901; arXiv:2302.02329.

Jet Transport in Nuclear Medium

z dependent nuclear medium modification

W. Ke, Y.-Y. Zhang, H. Xing, X.-N. Wang, Phys. Rev. D 110 (2024) 034001.

Jet Transport in Nuclear Medium

Nuclear modified jet function

Nuclear modified lepton jet correlation

H. T. Li, I. Vitev, Phys. Rev. Lett. 126 (2021) 252001. S. Fang, W. Ke, D.Y. Shao, J. Terry, JHEP 05 (2024) 066.

Summary

- Nucleon spin structures:
 - helicity distributions
 - transversity distributions, tensor charges, and Collins fragmentation functions
 - Sivers distribution functions,
 - trans-helicity worm-gear distribution functions
- Cold nuclear effects
 - nuclear PDFs and TMDs
 - jet transport parameter
 - z dependent p_T broadening
 - energy loss

Thanks to all members in semi-inclusive working group!

