



# **EicC Detector**

Yutie Liang Institute of Modern Physics, CAS

EicC 8<sup>th</sup> CDR Workshop

2024.08.18-20 Shandong University

# Outline

- > Central detector: Tracking, PID, ECal
- **Forward detector: EDT, RPs, ZDC, OMD**
- Beam polarimetry and luminosity measurement
- Readout and DAQ
- > Summary

# **Preliminary detector design at WP**



Beam background estimation is missing, which is critical to detector design.

# **EicC IR layout and detector at CDR**





e far-forward detectors



**Central detector** 



Ion far-forward detectors



# **Central Detector**

![](_page_4_Picture_1.jpeg)

# Tracking system

![](_page_5_Figure_1.jpeg)

# **Technology choices**

![](_page_6_Figure_1.jpeg)

## Performance

![](_page_7_Figure_1.jpeg)

# **PID detectors**

![](_page_8_Figure_1.jpeg)

- Cherenkov based (high p)
  - DIRC
  - RICH

![](_page_8_Figure_5.jpeg)

# LGAD

2 3 4 5 6

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

78

9 10

p (GeV)

Time resolution / layer: 20 ps

The detector geometry was reconfigured.  $\pi/K$  separation of 2-3 GeV/c achieved.

2.5

3 3.5

2

1.5

Time resolution / layer: 20 ps

ETTL

**♦**π/k

4.5 5

p (GeV)

4

# DIRC

![](_page_10_Figure_1.jpeg)

11

# mRICH

![](_page_11_Figure_1.jpeg)

12

![](_page_12_Picture_0.jpeg)

# **ECal design**

![](_page_13_Picture_1.jpeg)

Csl Crystal

**EicC Shashlik ECal** 

# Performance

![](_page_14_Figure_1.jpeg)

# e/π separation

| Momentum [GeV/c]                |                                                                               | $\pi^-$ suppresion ratio |                                              |                                   |
|---------------------------------|-------------------------------------------------------------------------------|--------------------------|----------------------------------------------|-----------------------------------|
| [0, 0.1]                        | Tra                                                                           | -                        |                                              |                                   |
|                                 | [0, 1]                                                                        | [1, 2]                   | [2, 3]                                       |                                   |
| [0.1, 0.2]                      | Long flight time +<br>tracking efficiency low,<br>discard                     |                          | EMC no hit+ tracking efficiency low, discard | -                                 |
| [0.2, 0.5]                      | Excellent e/ $\pi$ separation from TOF + below RICH $\pi$ Cherenkov threshold |                          |                                              | > 10 <sup>5</sup> :1              |
| [0.5, Cherenkov upper<br>limit] | RICH / DIRC + ECal + TOF                                                      |                          |                                              | <b>10</b> <sup>4</sup> : <b>1</b> |
| > Cherenkov upper limit         | ECal                                                                          |                          |                                              | <b>10</b> <sup>3</sup> :1         |

![](_page_15_Figure_2.jpeg)

# **Central Detector**

![](_page_16_Figure_1.jpeg)

# **Ion Far-forward detectors**

![](_page_17_Picture_1.jpeg)

# **Ion Far-forward detectors**

![](_page_18_Figure_1.jpeg)

# **Endcap Dipole Trackers (EDT)**

- Four silicon trackers (MAPS, AC-LGAD)
- Charged particle in 16 mr <  $\theta$  < 60 mr
- Full  $\phi$  coverage for  $\theta$  < 35 mr
- gaps for  $\theta$  > 35 mr and -30° <  $\phi$  < 30° to allow electron beam pass through
- ~ 0.5% resolution

- Motivation: many meson decay photons peak in this range
- Compact EM calorimeter (only ~30cm available space in z due to quad. magnets)
- Reasonable candidate: PbWO<sub>4</sub>
- Acceptance: 20 mr <  $\theta$  < 60 mr

![](_page_19_Picture_10.jpeg)

![](_page_19_Picture_11.jpeg)

## **Roman Pot Stations (RPS)**

- Roman pot station: 2 silicon trackers (MAPS + AC-LGAD) placed inside the ion beam pipe
- Small holes in the middle to allow ion beam passes through
- Each tracker made of two movable L-shape planes, making the hole size tunable
- ~ 0.3% resolution

![](_page_20_Figure_5.jpeg)

![](_page_20_Figure_6.jpeg)

![](_page_20_Figure_7.jpeg)

# **Roman Pot Stations (RPS)**

## High lumi. configuration

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

## Low lumi. configuration

![](_page_21_Picture_5.jpeg)

![](_page_21_Picture_6.jpeg)

- With EicC high luminosity ~4x10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>
  - larger beam spot size at RPS
  - central hole needs minimum (18cm / 10cm in x / y)
  - Only cover down to ~10 mrad
- With EicC high luminosity ~1x10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>
  - smaller beam spot size at RPS
  - central hole needs minimum (8cm / 4cm in x / y)
  - Can cover down to 5 mrad
- Possible way to reach ultra-forward angles:
  - spend 10~20% of run time to run low-lumi. setting, reaching angles ~5 mrad

# **Off Momentum Detector (OMD)**

- Purpose of OMD is for charged spectator tagging, which is essential for studies such as tagged DIS, SIDIS, SRC, etc.
- Envisioned technology: MAPS + AC-LGAD or MPGD + AC-LGAD
- Capable of detect charge particles with  $0.4 < p_f / p_i < 0.75$

![](_page_22_Picture_4.jpeg)

![](_page_22_Figure_5.jpeg)

![](_page_22_Figure_6.jpeg)

# Zero Degree Calorimeter (ZDC)

## **WSi detectors:**

- Imaging calo., pos recon., PID
- each layer 3.5mm W + 320um Si
- in total 42 layers
- Si layer readout 1cm x 1cm for now
- in total 50.6 cm x 50.6 cm x 22.5cm

# 2 PbSci detectors:

- Energy measurement for neutron
- each layer 25.6mm lead + 6.4mm scintillator
- 15 layers for each detector
- in total 60cm x 60cm x 48cm for each detector

![](_page_23_Picture_12.jpeg)

## **PbWO4 detectors:**

- For photon detection
- each module 2.2 cm x
  2.2 cm x 10 cm
- in total 50.6 cm x 50.6 cm x 10.0 cm

## **EicC detector at CDR**

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_2.jpeg)

## **EicC detector at CDR**

![](_page_25_Figure_1.jpeg)

## **EicC detector at CDR**

![](_page_26_Picture_1.jpeg)

# **Polarimeters and Luminosity Monitors**

## Luminosity measurement

- Bremsstrahlung luminosity monitor
- Electron beam polarimetry
  - Compton polarimeter

## Proton beam polarimetry

- pp absolute
- pC relative polarimeters

![](_page_27_Figure_8.jpeg)

# **Luminosity Monitors**

- via elastic bremsstrahlung off electrons; large and well-know cross section ~mb
- Detect bremsstrahlung photons downstream electron beam
  - Photon conversion to e+e- for precise luminosity calibration
  - Direct photon detection for instantaneous luminosity monitoring

![](_page_28_Figure_5.jpeg)

![](_page_28_Figure_6.jpeg)

y(mm)

Photon spot at z=30m

![](_page_28_Figure_8.jpeg)

# **Electron Compton Polarimeter**

- Quasi-head-on collision with high-power 100% circularly polarized laser
- Independent detectors for electron and photon of  $\vec{e}\vec{\gamma} \rightarrow e\gamma$
- Noninvasive and continuous measurement of asymmetries between left and right handed laser polarization states

![](_page_29_Figure_4.jpeg)

- Geant4 simulation is ongoing

# **Proton polarimetry scheme**

![](_page_30_Figure_1.jpeg)

Technologies are rather mature in the world. However, critical R&D needs to be identified from our side.

# **Simulation and Software**

![](_page_31_Figure_1.jpeg)

## > EiccRoot\_3.0.0:

- Full magnetic fields (16 field maps) in the IR region
- Complete beam pipe design from -40 to 20 meters
- Interface to event generators:

EvtGen, Pythia, MILOU, eStarLight...

Tracking, ECal, Forward detector, Polarimetry
packages in good shape

![](_page_31_Picture_8.jpeg)

# **Readout and data acquisition**

![](_page_32_Figure_1.jpeg)

## **PiDAQ: PCIe based hardware**

![](_page_32_Picture_3.jpeg)

#### R&D is in parallel with **STCF** & **NvDEx**. Plan to integrate with front-ends in this summer.

| Card                             | FPGA                                                                              | Generation                                                                                                    | Endpoint x Throughput                                                                                                                                               | Server               | Note                                 |
|----------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|
| PDQ060                           | KU060                                                                             | Gen3x8                                                                                                        | 1 x 7.48 GB/s                                                                                                                                                       | CHOU                 | MKU060 (Milianke)                    |
| PDQ016                           | KU5P                                                                              | Gen3x8                                                                                                        | 1 x 7.38 GB/s                                                                                                                                                       | HSIA                 | KCU116 (Xilinx)                      |
| 000004/5                         | KU15P                                                                             | Gen3x8                                                                                                        | 2 x 7.38 GB/s                                                                                                                                                       | 11014                | PDQ124 (CCNU)                        |
| PDQ024/5                         |                                                                                   | Gen3x16                                                                                                       | 1 x 14.76 GB/s                                                                                                                                                      | HSIA                 |                                      |
| PDQ124/5                         | KU15P                                                                             | Gen4x8                                                                                                        | 2 x 14.76 GB/s                                                                                                                                                      | HSIA                 | PDQ124 (CCNU)                        |
| PDQ116                           | KU5P                                                                              | Gen4x8                                                                                                        | 1 x 14.76 GB/s                                                                                                                                                      | HSIA                 | KCU116 (Xilinx)                      |
| PDQ128                           | VU37P                                                                             | Gen4x8                                                                                                        | 2 x 14.76 GB/s                                                                                                                                                      | HSIA                 | VCU128 (Xilinx)                      |
| PDQ142                           | VM1402                                                                            | Gen4x8                                                                                                        | 1 x 14.76 GB/s                                                                                                                                                      | HSIA                 | PDQ142 (CCNU)                        |
| Secs<br>1<br>### E<br>2<br>### E | Recvd[H8/s] Fil<br>14762.0<br>Nocks 14156858 Err<br>14760.9<br>Nocks 28663488 Err | e[M8/s]   Total[(M)B]  <br>0.0 14762.0<br>0rs: header=14156058 tra<br>0.0 29522.9<br>ors: header=28663488 tra | Rec[(H)B]   Buf[5]   Wraps<br>0 27 13<br>siler=0 (trunc=0 err=0 length=0 type=1<br>biler=0 (trunc=0 err=0 length=0 type=1<br>siler=0 (trunc=0 err=0 length=0 type=1 | ) crc=0)<br>) crc=0) | Measured with<br>ATLAS FELIX softwar |

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

## **VERO: ATCA based hardware**

VAB23

- 🖵 Versatile Readout (VERO) system
  - > VAB23 (Versatile ATCA Blade): to be tested in June
  - > VRM24 (Versatile Rear Module): to be tested in July
  - ≻ AMC Mezzanine
- 🗅 AMC cards to be supported
  - > LAM24 (Loopback AMC Mezzanine)
  - **SAM25** (SAMPA AMC Mezzanine)
  - > TAM24 (Trigger AMC Mezzanine): to be tested in Nov
  - > CAM24 (Converter AMC Mezzanine)

![](_page_32_Picture_18.jpeg)

# **Status of CDR**

| 3 | Tra | cking system 137                                                  |  |  |  |  |  |  |
|---|-----|-------------------------------------------------------------------|--|--|--|--|--|--|
|   | 3.1 | Introduction                                                      |  |  |  |  |  |  |
|   | 3.2 | Choice of technology                                              |  |  |  |  |  |  |
|   |     | 3.2.1 The MAPS for EicC tracker                                   |  |  |  |  |  |  |
|   |     | 3.2.2 The MPGD for EicC tracker                                   |  |  |  |  |  |  |
|   | 3.3 | The conceptual design and performance                             |  |  |  |  |  |  |
|   |     | 3.3.1 The hybrid tracker layout                                   |  |  |  |  |  |  |
|   |     | 3.3.2 Detector simulation and track reconstruction                |  |  |  |  |  |  |
|   |     | 3.3.3 Momentum resolution                                         |  |  |  |  |  |  |
|   |     | 3.3.4 Vertex resolution                                           |  |  |  |  |  |  |
|   |     | 3.3.5 Angular resolution                                          |  |  |  |  |  |  |
|   |     | 3.3.6 Tracking efficiency 153                                     |  |  |  |  |  |  |
|   | 3.4 | Optimization and Evolution of the FicC Tracking System Design 156 |  |  |  |  |  |  |
|   | 5   | 341 The toolkit for ontimization 156                              |  |  |  |  |  |  |
|   |     | 342 The strategy of optimization 157                              |  |  |  |  |  |  |
|   |     | 34.3 The optimized geometry 162                                   |  |  |  |  |  |  |
|   |     | 3.4.4 The conservative design 165                                 |  |  |  |  |  |  |
|   |     | 5.4.4 The conservative design                                     |  |  |  |  |  |  |
| 4 | PID | system 167                                                        |  |  |  |  |  |  |
|   | 4.1 | Physics Requirements to PIDs                                      |  |  |  |  |  |  |
|   | 4.2 | Detector Options for PID                                          |  |  |  |  |  |  |
|   |     | 4.2.1 Tracking detectors                                          |  |  |  |  |  |  |
|   |     | 4.2.2 Cherenkov detectors                                         |  |  |  |  |  |  |
|   |     | 4.2.3 Time Of Flight (TOF) 172                                    |  |  |  |  |  |  |
|   | 4.3 | Baseline Design for PID                                           |  |  |  |  |  |  |
|   |     | 4.3.1 The dRICH Designed at Ion Endcap                            |  |  |  |  |  |  |
|   |     | 4.3.2 The hpDIRC designed at Barrel Region                        |  |  |  |  |  |  |
|   |     | 4.3.3 The pfRICH Designed at Electron Endcap                      |  |  |  |  |  |  |
|   |     | 4.3.4 The TOF detector design                                     |  |  |  |  |  |  |
|   |     | 4.3.5 Summary of PID detectors                                    |  |  |  |  |  |  |
| 5 | Cal | orimetry 101                                                      |  |  |  |  |  |  |
| 2 | 51  | Introduction 191                                                  |  |  |  |  |  |  |
|   | 5.2 | The Design of FCal Detector 197                                   |  |  |  |  |  |  |
|   | 53  | The Crystal Calorimeter 193                                       |  |  |  |  |  |  |
|   | 0.0 | 5.3.1 CsI Module Design 103                                       |  |  |  |  |  |  |
|   |     | 5.3.2 Array Simulation 104                                        |  |  |  |  |  |  |
|   |     | 5.3.2 Array Simulation in 194                                     |  |  |  |  |  |  |
|   | 54  | The Shashlik Style Sampling Calorimeter 200                       |  |  |  |  |  |  |
|   | 5.4 | 5.4.1 Shashlik Module Design 200                                  |  |  |  |  |  |  |
|   |     | 5.4.2 Array Simulation 201                                        |  |  |  |  |  |  |
|   |     | 5.4.2 Allay Simulation                                            |  |  |  |  |  |  |
|   |     | 5.4.4 Optical transportation simulation                           |  |  |  |  |  |  |
|   |     | 5.4.4 Optical transportation simulation                           |  |  |  |  |  |  |
|   |     | 3.4.3 The Shashink Prototype                                      |  |  |  |  |  |  |
|   | 5.5 | whole ENC Simulation and Reconstruction                           |  |  |  |  |  |  |
|   |     | 5.5.1 Single electron reconstruction                              |  |  |  |  |  |  |
|   |     | $3.3.2 \pi$ reconstruction                                        |  |  |  |  |  |  |

|    | 5.6                          | Shashlik Style Prototype R&D                                     |  |  |  |  |
|----|------------------------------|------------------------------------------------------------------|--|--|--|--|
|    |                              | 5.6.1 Shashlik 5D Readout Design                                 |  |  |  |  |
|    | 5.7                          | Challenge and Discussion                                         |  |  |  |  |
| 6  | Pola                         | rimetry and luminosity monitor 211                               |  |  |  |  |
|    | 6.1                          | Beam polarimetry                                                 |  |  |  |  |
|    |                              | 6.1.1 Proton polarimetry                                         |  |  |  |  |
|    |                              | 6.1.2 Helium polarimetry                                         |  |  |  |  |
|    |                              | 6.1.3 Electron polarimetry                                       |  |  |  |  |
|    | 6.2                          | Luminosity monitor                                               |  |  |  |  |
| 7  | Far-f                        | forward detectors 239                                            |  |  |  |  |
|    | 7.1                          | Introduction                                                     |  |  |  |  |
|    | 7.2                          | Design consideration                                             |  |  |  |  |
|    |                              | 7.2.1 Related physics for far-forward detectors                  |  |  |  |  |
|    |                              | 7.2.2 Beam optics and detector integration in far-forward region |  |  |  |  |
|    | 7.3                          | Endcap dipole tracker and Roman pots                             |  |  |  |  |
|    | 7.4                          | Zero-degree calorimeter                                          |  |  |  |  |
|    | 7.5                          | Off-momentum detector                                            |  |  |  |  |
|    | 7.6                          | Physics Impacts                                                  |  |  |  |  |
|    |                              | 7.6.1 Simulation                                                 |  |  |  |  |
|    |                              | 7.6.2 Forward proton from DVCS                                   |  |  |  |  |
|    |                              | 7.6.3 Forward A reconstruction                                   |  |  |  |  |
|    |                              | 7.6.4 Spectator tagging                                          |  |  |  |  |
|    | 7.7                          | Conclusion                                                       |  |  |  |  |
| 8  | Dete                         | ctor magnet system 261                                           |  |  |  |  |
|    | 8.1                          | Superconducting solenoid                                         |  |  |  |  |
|    | 8.2                          | Superconducting dipole and quadrupole magnets                    |  |  |  |  |
| 9  | Readout and data acquisition |                                                                  |  |  |  |  |
|    | 9.1                          | Readout electronics                                              |  |  |  |  |
|    | 9.2                          | Data acquisition                                                 |  |  |  |  |
| 10 | Offli                        | ne software 273                                                  |  |  |  |  |
|    | 10.1                         | Software framework                                               |  |  |  |  |
|    | 10.2                         | Simulation and reconstruction                                    |  |  |  |  |
|    |                              | 10.2.1 Track reconstruction                                      |  |  |  |  |
|    |                              | 10.2.2 Vertex reconstruction                                     |  |  |  |  |
|    |                              | 10.2.3 Cluster reconstruction                                    |  |  |  |  |
|    |                              |                                                                  |  |  |  |  |

# Summary

- Big progress in various aspects for the past three years.
- > Central detector: tracking, PID, ECal well studied.
- Ion forward detectors is in good shape.
- Electron forward detectors ongoing.
- Beam background need to be studied.

# **Thank You**

# **PiDAQ: PCIe based hardware**

![](_page_36_Picture_1.jpeg)

## R&D is in parallel with **STCF** & **NvDEx**. **Plan to integrate with front-ends in this summer.**

| Card     | FPGA   | Generation | Endpoint x Throughput | Server | Note                         |
|----------|--------|------------|-----------------------|--------|------------------------------|
| PDQ060   | KU060  | Gen3x8     | 1x 7.48 GB/s          | CHOU   | MKU060 (Milianke)            |
| PDQ016   | KU5P   | Gen3x8     | 1 x 7.38 GB/s         | HSIA   | KCU116 (Xilinx)              |
|          | KU15P  | Gen3x8     | 2 x 7.38 GB/s         |        | PDQ124 ( <mark>CCNU</mark> ) |
| PDQU24/5 |        | Gen3x16    | 1 x 14.76 GB/s        | пыа    |                              |
| PDQ124/5 | KU15P  | Gen4x8     | 2 x 14.76 GB/s        | HSIA   | PDQ124 (CCNU)                |
| PDQ116   | KU5P   | Gen4x8     | 1 x 14.76 GB/s        | HSIA   | KCU116 (Xilinx)              |
| PDQ128   | VU37P  | Gen4x8     | 2 x 14.76 GB/s        | HSIA   | VCU128 (Xilinx)              |
| PDQ142   | VM1402 | Gen4x8     | 1 x 14.76 GB/s        | HSIA   | PDQ142 (CCNU)                |

Secs Recvd[MB/s] | File[MB/s] | Total[(M)B] | Rec[(M)B] | Buf[%] | Wraps 14762.0 14762.0 27 13 0.0 1 ### Blocks 14156858 Errors: header=14156858 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0) 29522.9 2 14760.9 0.0 Θ 18 27 ### Blocks 28663488 Errors: header=28663488 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0) 44272.5 0 7 41 14749.6 0.0

Measured with ATLAS FELIX software

![](_page_36_Picture_6.jpeg)

**PDQ124**: KU15P, 6x QSFP28 **PDQ125**: KU15P, 2x 12-ch module **PDQ142**: VM1402, 2x QSFP28

# **VERO: ATCA based hardware**

## Versatile Readout (VERO) system

- > VAB23 (Versatile ATCA Blade): to be tested in June
- > VRM24 (Versatile Rear Module): to be tested in July

 $\succ$  AMC Mezzanine

# AMC cards to be supported

- LAM24 (Loopback AMC Mezzanine)
- > SAM25 (SAMPA AMC Mezzanine)
- **TAM24** (Trigger AMC Mezzanine): to be tested in Nov
- **CAM24** (Converter AMC Mezzanine)

![](_page_37_Figure_10.jpeg)

# **MAPS readout system: CARO**

- Control and Readout system (CARO)
  - $\succ$  Flexible readout system for pixel chips
- □ Use the AMD Kria K26 SOM card
- Board is being deisgned to support MIC6 & ALPIDE
   May support other types of detector
- $\hfill\square$  Modular design to support telescope readout in the future
- $\Box$  Prepare for on-stave electronics in the future

## Schedule

- $\succ$  Schematics design
- ≻ PCB design
- $\succ$  PCB fabrication and assembly
- $\succ$  HW, FW, and SW

(24/03-04) (24/05-06) (24/07) (24/07-10)

![](_page_38_Figure_13.jpeg)

Accelerator and beam conditions critical for physics and detector

simulations for the Electron-Ion Collider

- Document: https://zenodo.org/records/6514605
- Code: https://github.com/eic/afterburner
  - **Crossing angle** 1.
  - 2. Crab Cavity
  - Angular Beam Divergence 3.
  - Bunch Length 4.

#### With Bunch Length and Crab Cavity Effect

-0.9

-1.1

-1.2

-1.3

-200

Hist z vs px: particle = iniproton

- px [GeV] Crab cavity will rotate the bunch, giving it a "kick" in the x-direction -0.8
- The "kick" is z-dependent, no kicking in the middle of the bunch
- Effect is at the level of 20 MeV from head to tail
  - Currently, effect in the program twice larger than expected. need to find out why

![](_page_39_Figure_14.jpeg)

200

Vz [mm]

150

100

hist\_zvspx\_iniprotor Entries

Mean x

Mean v

Std Dev x

Std Dev v

236512

0.0132

40.08

0.02831

# **Forward** Λ detection

![](_page_40_Figure_1.jpeg)

# Structure of the EicC barrel silicon tracker

![](_page_41_Figure_1.jpeg)

• ITS2-based Silicon Tracker (2 OB layers)

![](_page_41_Figure_3.jpeg)

▶ 针对EicC,尽快启动MAPS探测器设计与仿真,开展柔性PCB、碳纤维机械支撑等关键器部件的市场调研

# **Central Detector**

![](_page_42_Picture_1.jpeg)

# **Central Detector**

![](_page_43_Figure_1.jpeg)

# **EicC Detector**

![](_page_44_Figure_1.jpeg)

# **Proton polarimetry scheme**

![](_page_45_Figure_1.jpeg)

|                  | H-Jet polarimeter             | pC polarimeter                                                        |
|------------------|-------------------------------|-----------------------------------------------------------------------|
| Target           | Polarized H gas jet           | Carbon fiber                                                          |
| Target thickness | $\sim 10^{12} atoms/cm^2$     | $\sim 10^{16} atoms/cm^2$                                             |
| Event rate       | ~ 60 Hz                       | ~ 2 MHz                                                               |
| Operation        | continuously                  | ~ 1 min/h                                                             |
| Analyzing power  | self-calibrated               | unknown                                                               |
| Role             | Absolute, slow<br>Noninvasive | Fast, relative<br>Polarization profile<br>Feedback for machine tuning |

# FDT running at Low luminosity mode

|                                                 | High Lumi.                     |                     | Low Lumi.                      |             |  |  |
|-------------------------------------------------|--------------------------------|---------------------|--------------------------------|-------------|--|--|
| Designs                                         | HIAF-U-                        | New, V0             | V                              | ′1          |  |  |
| Particle                                        | е                              | р                   | е                              | р           |  |  |
| Circumference(m)                                | 1151.20                        | 1149.07             | 1151.20                        | 1149.07     |  |  |
| Kinetic energy (GeV)                            | 3.5                            | 19.08               | 3.5                            | 19.08       |  |  |
| Momentum (GeV)                                  | 3.5                            | 20                  | 3.5                            | 20          |  |  |
| Total energy (GeV)                              | 3.5                            | 20.02               | 3.5                            | 20.02       |  |  |
| CM energy (GeV)                                 |                                | 16 <mark>.76</mark> |                                |             |  |  |
| f <sub>collision</sub> (MHz)                    | 100                            |                     |                                |             |  |  |
| Polarization                                    | 80%                            | 70%                 | 80%                            | 70%         |  |  |
| <i>Β</i> ρ (T·m)                                | 11.7                           | 67.2                | 11.7                           | 67.2        |  |  |
| Bunch intensity(×10 <sup>11</sup> )             | 1.7                            | 1.05                | 0.44                           | 0.27        |  |  |
| $\varepsilon_x/\varepsilon_y$ (nm·rad, rms)     | 50/15                          | 100/50              | 12.5/3.75                      | 25/12.5     |  |  |
| $eta_x^*/eta_y^*$ (cm)                          | 10/4                           | 5/1.2               | 10/4                           | 5/1.2       |  |  |
| RMS divergence (mrad)                           |                                | 1.4/2.0             |                                | 0.7/1.0     |  |  |
| 6×RMS size @ BpF2 (cm)                          |                                | 9.3/4.6             |                                | 4.6/2.3     |  |  |
| 8×RMS size @ BpF2 (cm)                          |                                | 12.4/6.2            |                                | 6.2/3.1     |  |  |
| 10×RMS size @ BpF2 (cm)                         |                                | 15.5/7.7            |                                | 7.8/3.9     |  |  |
| Bunch length (cm, rms)                          | 0.75                           | 8                   | 0.75                           | 8           |  |  |
| BB parameter $\xi_x/\xi_y$                      | 0.102/0.118                    | 0.0144/0.01         | 0.105/0.121                    | 0.015/0.010 |  |  |
| Laslett tune shift                              | -                              | 0.066/0.105         |                                | 0.065/0.10  |  |  |
| Energy loss (MeV/turn)                          | 0.32                           | -                   |                                |             |  |  |
| Total SR power (MW)                             | 0.86                           | -                   |                                |             |  |  |
| Average Current (A)                             | 2.7                            | 1. <b>6</b> 8       |                                |             |  |  |
| Crossing angle (mrad)                           | 50                             |                     |                                |             |  |  |
| Luminosity (cm <sup>-2.</sup> s <sup>-1</sup> ) | 4.25×10 <sup>33</sup> (H=0.52) |                     | 1.13×10 <sup>33</sup> (H=0.52) |             |  |  |

Assuming ¼ of data taking time running at low luminosity mode.

![](_page_46_Figure_3.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_48_Picture_0.jpeg)

# MAPS Chip Design – 基于国内工艺研发MIC6 -- 孙向明, 肖乐

![](_page_49_Figure_1.jpeg)

- ➢ 华力55nm CIS工艺:
- 三阱 (合作开发了第四阱Deep PW)
- 进行了一次流片
- 首次基于国产工艺设计的MAPS探测到<sup>55</sup>Fe能谱, CCE > 93.5%, MAPS工艺国产化
- 成功验证读出架构芯片MIC6\_V1,每1.56ns读出8个像素(ALPIDE每25ns读出1个像素)
- ➤ 台积电180nm BCD工艺:
- 四阱、高压70V
- 第一次流片和测试:像素阵列测试芯片可以探测到90Sr信号
- 第二次流片:优化了diode结构,设计了MIC6\_V2,已流片(2023年12月)
- ▶ 华虹宏力130nm工艺:
- 三阱(合作开发了第四阱Deep PW)、全高阻衬底
- 第一次流片:完成像素阵列测试芯片的设计,已流片(2023年10月)
- 第二次流片:已设计MIC6\_V3 (全功能MAPS芯片),已流片 (2024年3月)

# Zero Degree Calorimeter (ZDC)

![](_page_50_Figure_1.jpeg)