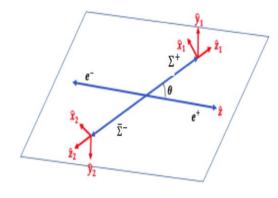


Parameterization

Formalism

- Reaction described by $\xi = (\theta, \theta_1, \theta_2, \phi_1, \phi_2)$
- Decay distribution given by


$$\mathcal{W}(\xi) = \mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi)$$
 SPIN CORRELATIONS
$$+\alpha_1 \alpha_2 \left(\mathcal{F}_1(\xi) + \sqrt{1 - \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2(\xi) - \alpha \mathcal{F}_6(\xi) \right)$$

$$+\sqrt{1-\alpha^2}\sin(\Delta\Phi)(-\alpha_1\mathcal{F}_3(\xi)+\alpha_2\mathcal{F}_4(\xi))$$

POLARIZATIONS

•
$$R = \sqrt{\tau} \sqrt{\frac{1-\alpha}{1+\alpha}}, \tau = \frac{q^2}{4m^2}$$

• Both the values of R and $\Delta \Phi$ could be extracted by MLL fit.

$$\mathcal{F}_0 = 1$$

 $\mathcal{F}_1 = \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 - \cos^2\theta \cos\theta_1 \cos\theta_2,$

 $\mathcal{F}_2 = \sin\theta \cos\theta (\sin\theta_1 \cos\theta_2 \cos\phi_1 - \cos\theta_1 \sin\theta_2 \cos\phi_2),$

 $\mathcal{F}_3 = \sin\theta \cos\theta \sin\theta_1 \sin\phi_1,$

 $\mathcal{F}_4 = \sin\theta \cos\theta \sin\theta_2 \sin\phi_2,$

 $\mathcal{F}_5 = \cos^2 \theta \,,$

 $\mathcal{F}_6 = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2$

$$W(\xi) = \mathcal{T}_0 + \eta \mathcal{T}_5 - \alpha_{\Lambda}^2 \left[\mathcal{T}_1 + \sqrt{1 - \eta^2} \cos(\Delta \Phi) \mathcal{T}_2 + \eta \mathcal{T}_6 \right]$$
$$+ \alpha_{\Lambda} \sqrt{1 - \eta^2} \sin(\Delta \Phi) (\mathcal{T}_3 - \mathcal{T}_4), \tag{3}$$

where α_{Λ} denotes the decay asymmetry of the $\Lambda \to p\pi^-$ decay. The seven functions $\mathcal{T}_k(\boldsymbol{\xi})$ do not depend on the parameters η and $\Delta\Phi$, but only on the measured angles:

$$T_0(\boldsymbol{\xi}) = 1$$
,

 $T_1(\xi) = \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 + \cos^2\theta \cos\theta_1 \cos\theta_2$

 $\mathcal{T}_2(\boldsymbol{\xi}) = \sin\theta\cos\theta(\sin\theta_1\cos\theta_2\cos\phi_1 + \cos\theta_1\sin\theta_2\cos\phi_2),$

 $T_3(\boldsymbol{\xi}) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$

 $\mathcal{T}_4(\boldsymbol{\xi}) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$,

 $T_5(\boldsymbol{\xi}) = \cos^2 \theta$,

 $T_6(\xi) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2$.

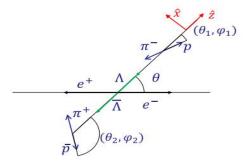


FIG. 1. Definition of the coordinate system used to describe the $e^+e^- \to \Lambda\bar{\Lambda} \ (\Lambda \to p\pi^-, \bar{\Lambda} \to \bar{p}\pi^+)$ process.

ML fit

$$\mathcal{L} = \prod_{i=1}^{N} \mathcal{P}(\xi_i; \alpha, \Delta\Phi) = \prod_{i=1}^{N} \mathcal{CW}(\xi_i; \alpha, \Delta\Phi) \epsilon(\xi_i),$$

- i is the event index
- $P(\xi_i; \alpha, \Delta\Phi)$ is the probability density function of ξ_i
- $\epsilon(\xi_i)$ is the efficiency of each event
- $\mathcal{C}^{-1} = \int \mathcal{W}(\xi; \alpha, \Delta\Phi) \epsilon(\xi) d\xi$ is the normalization factor \mathcal{C}

$$S = -\ln \mathcal{L}_{Data} + \ln \mathcal{L}_{Bkg},$$

Decay asymmetry — Maximum likelihood fit

$$\mathcal{L} = \prod_{i=1}^{N} \frac{\mathcal{W}(\xi, \alpha_{\gamma})_{i} \varepsilon(\xi)_{i}}{C}$$

$$C = \frac{1}{N} \sum_{i=1}^{N} \frac{\mathcal{W}(\xi, \alpha_{\gamma})_{i}}{\mathcal{W}(\xi_{0}, \alpha_{\gamma})_{i}}$$

$$\begin{split} -\ln \mathcal{L}_{sig} &= -\ln \mathcal{L}_{data} + \ln \mathcal{L}_{bkg} \\ &= -\sum_{data} \ln \mathcal{W} + \sum_{bkg} \ln \mathcal{W} + (N_{data} - N_{bkg}) * \ln C \end{split}$$

14.4.2 期望值估计法

任何一个积分都可以表示为某个随机变量的数学期望,因此,可以用该随机变量的子样平均值作为积分的近似值.

设欲求的积分为

$$I = \int_{V} g(x) \mathrm{d}x,\tag{14.4.16}$$

其中 $x=\{x_1,x_2,\cdots,x_s\}$ 表示 S 维空间的点, V_s 表示积分区域。 令 f(x) 为 V_s 上的任一随机变量 $\mathcal E$ 的概率密度函数

$$\int_{V} f(\mathbf{x}) d\mathbf{x} = 1, \tag{14.4.17}$$

则积分I可表示为随机变量h(x) = g(x)/f(x)的数学期望

$$I = \int_{V_s} g(x) dx = \int_{V_s} \frac{g(x)}{f(x)} f(x) dx = E \left[\frac{g(x)}{f(x)} \right] = E[h(x)].$$
 (14.4.15)

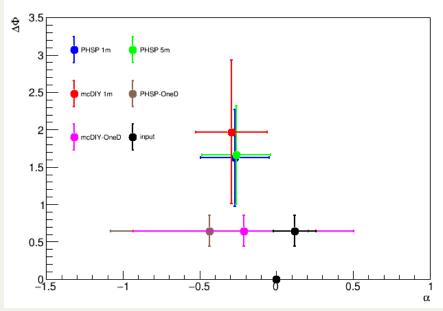
当从随机变量 ξ 抽取容量为n的随机子样 ξ_1,ξ_2,\cdots,ξ_n (即服从分布f(x)的随机数)。可求得随机变量h(x)的子样 h_1,h_2,\cdots,h_n ,

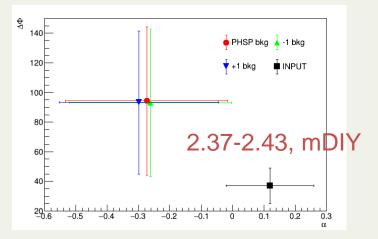
$$h_i = h(\xi_i) = g(\xi_i) / f(\xi_i). \tag{14.4.19}$$

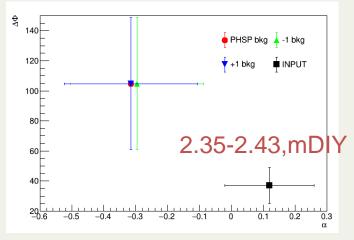
而根据大数定律,当 $n \to \infty$ 时,子样平均

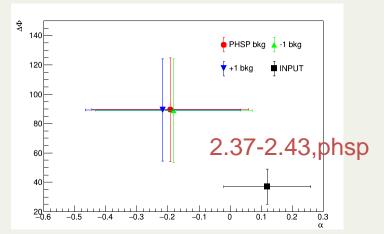
第十四章 蒙特卡罗法

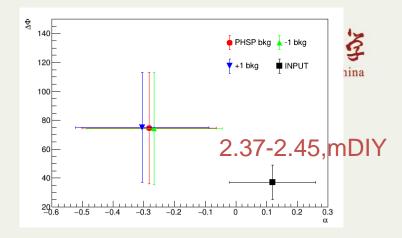
. 559 .

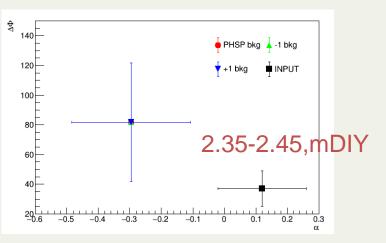

$$\hat{h} = \frac{1}{n} \sum_{i=1}^{n} h_i \tag{14.4.20}$$

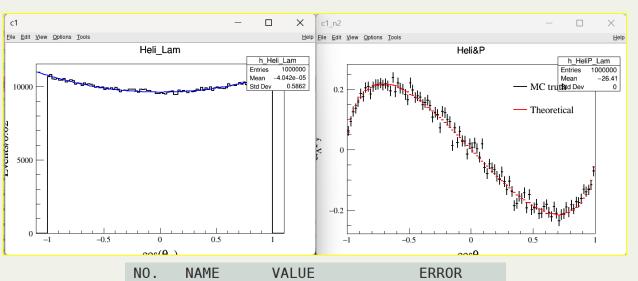

m望值E[h]与总体h的数学期望E[h]相等,所以当n充分大时,有


$$I = E[h] = E[\hat{h}] \approx \frac{1}{n} \sum_{i=1}^{n} h_i \equiv I_n.$$
 (14.4.21)




8		8 .				
t			3773		4128-4258	
T	M_1	M_r	Ndata	Nsig	Ndata	Nsig
T	2. 23	2. 31	22	19. 92961	1	0. 87886
	2. 31	2. 33	20	17. 27213	7	6.71859
	2. 33	2. 35	36	31. 37735	2	1. 36996
Ī	2. 35	2. 37	40	33.60154	13	11. 989
	2. 37	2. 39	61	54. 1591	10	8. 5271
1	2. 39	2. 41	53	44. 92773	13	11. 1579
1	2. 41	2. 43	51	42. 69043	11	9. 06577
	2. 43	2. 45	51	42. 63131	15	12. 8528
Ī	2. 45	2. 47	44	35. 83603	7	4. 69727
	2. 47	2. 49	49	40. 72529	13	10. 7822
T	2. 49	2. 51	32	23. 62878	7	4.71956
T	2. 51	2. 53	32	23. 97409	17	14. 7041
	2. 53	2. 55	38	30. 34397	8	5. 86071
Ī	2. 55	2. 57	28	20. 82146	9	6. 76202
	2. 57	2. 59	29	21. 41971	3	0. 85978
Ī	2. 59	2. 61	30	22. 76648	9	7. 01061
	2. 61	2. 63	25	18. 10658	13	11. 0077
	0 60	0 65	27	20 1570	7	E 10E97

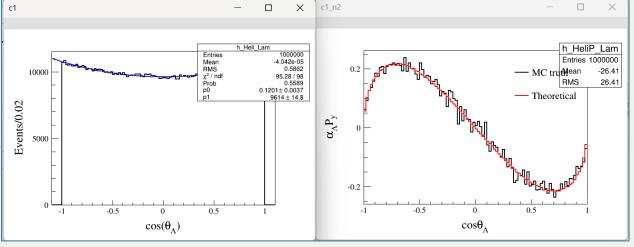




р0 р1

2

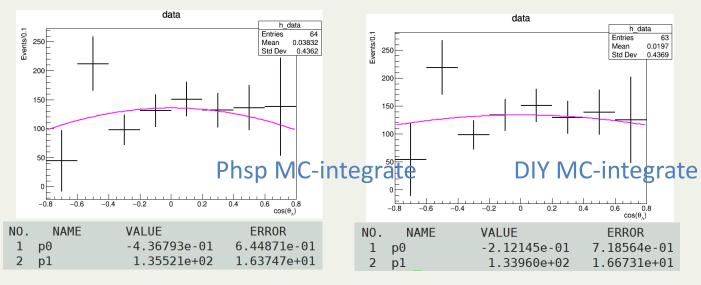
MCtruth

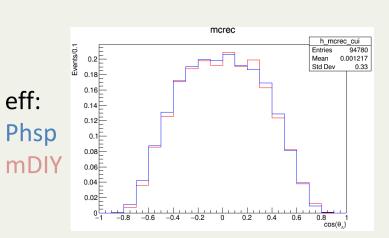


1.20123e-01

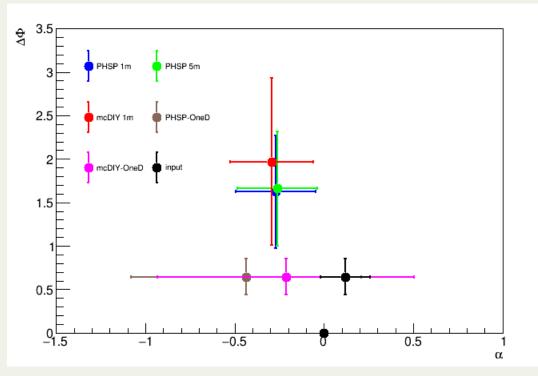
9.61413e+03

3.66497e-03

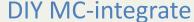

1.48280e+01

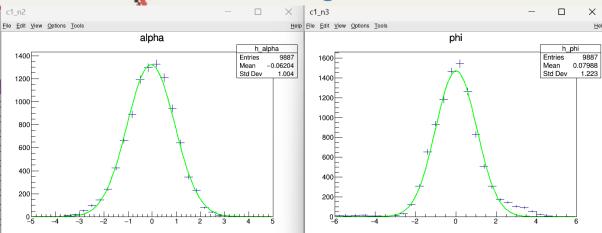


1D fit

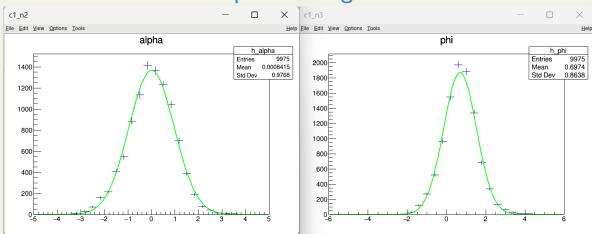


Check the distribution of $cos\theta_{\Lambda}$ in the $\Lambda\overline{\Lambda}$ -CMS system (production level): (Data-bkg)/eff


eff:



Pull distribution (pure signal)

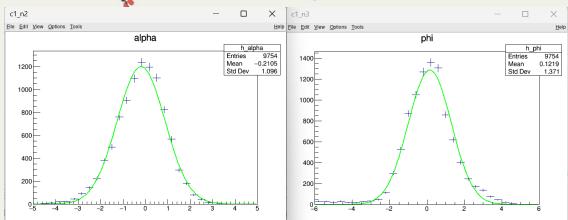


10000 times fit with 207 events randomly selected in DIY MC (no bkg), 9810 of them give good fit.

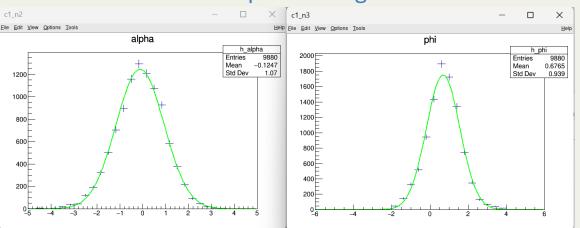
FCN=91.0484 FROM	MIGRAD STA	TUS=CONVERGED	61 CALLS	62 TOTAL			
	EDM=2.02553	Be-07 STRATE	EGY= 1 ERF	ROR MATRIX ACCURATE			
EXT PARAMETER			STEP	FIRST			
NO. NAME	VALUE	ERROR	SIZE	DERIVATIVE			
1 Constant	1.32379e+03	1.69342e+01	6.26573e-02	-4.04824e-05			
2 Mean	-5.10196e-02	1.01911e-02	4.66036e-05	-5.34806e-03			
3 Sigma	9.84108e-01	7.72683e-03	9.39926e-06	-2.95688e-01			
FCN=432.252 FROM	MIGRAD STA	ΓUS=CONVERGED	80 CALLS	81 TOTAL			
EDM=2.10133e-08 STRATEGY= 1 ERROR MATRIX ACCURATE							
EXT PARAMETER			STEP	FIRST			
NO. NAME	VALUE	ERROR	SIZE	DERIVATIVE			
1 Constant	1.47155e+03	1.94407e+01	1.54189e-01	2.66221e-06			
2 Mean	2.08370e-02	1.10481e-02	1.06905e-04	-1.64374e-02			
3 Sigma	1.02030e+00	8.42603e-03	1.91119e-05	-5.86133e-03			

Phsp MC-integrate

10000 times fit with 207 events randomly selected in DIY MC (no bkg), 9975 of them give good fit.


FCN=1	11.128 FROM	MIGRAD S	STATUS=CON	VERGED	62 CALLS	63 TOTAL	
		EDM=2.22	297e-08	STRATEG	SY= 1 ERR	OR MATRIX ACCURATE	
EXT	PARAMETER				STEP	FIRST	
NO.	NAME	VALUE	ERR	0R	SIZE	DERIVATIVE	
1	Constant	1.36895e+6	3 1.765	23e+01	7.12671e-02	-1.54437e-06	
2	Mean	6.30233e-0	9.901	58e-03	4.98924e-05	9.99424e-03	
3	Sigma	9.58198e-0	1 7.720	01e-03	1.05322e-05	-6.84750e-02	
FCN=1	23.057 FROM	MIGRAD S	STATUS=CON	VERGED	62 CALLS	63 TOTAL	
EDM=5.17046e-07 STRATEGY= 1 ERROR MATRIX ACCURATE							
EXT	PARAMETER				STEP	FIRST	
NO.	NAME	VALUE	ERR	0R	SIZE	DERIVATIVE	
1	Constant	1.87313e+6	3 2.468	20e+01	1.02767e-01	-9.00425e-06	
2	Mean	6.89587e-0	8.454	55e-03	4.59315e-05	-1.43940e-02	
3	Sigma	8.37098e-0	7.095	08e-03	1.14794e-05	-4.14684e-01	

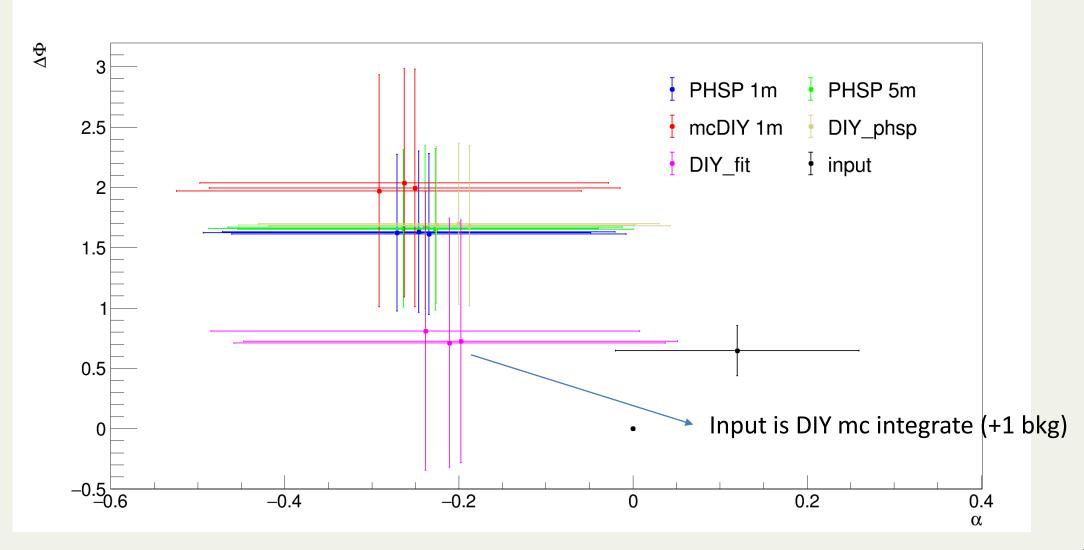
Pull distribution (signal + bkg)


DIY MC-integrate

10000 times fit, 181 signal events, 26 bkg. 9754 of them give good fit.

FCN=135.549 FROM	MIGRAD STA	TUS=CONVERGED	62 CALLS	63 TOTAL
	EDM=2.9580	5e-07 STRATI	EGY= 1 ER	ROR MATRIX ACCURATE
EXT PARAMETER			STEP	FIRST
NO. NAME	VALUE	ERR0R	SIZE	DERIVATIVE
1 Constant	1.19848e+03	1.55595e+01	6.97322e-02	-1.83378e-05
2 Mean	-1.95368e-01	1.13616e-02	6.20938e-05	2.71081e-02
3 Sigma	1.06703e+00	8.57352e-03	1.14844e-05	-2.89480e-01
FCN=408.028 FROM	MIGRAD STA	TUS=CONVERGED	77 CALLS	78 TOTAL
	EDM=1.35763	3e-08 STRATI	EGY= 1 ER	ROR MATRIX ACCURATE
EXT PARAMETER			STEP	FIRST
NO. NAME	VALUE	ERR0R	SIZE	DERIVATIVE
1 Constant	1.28998e+03	1.79389e+01	1.32365e-01	-2.25017e-06
2 Mean	1.51220e-01	1.24652e-02	1.17576e-04	-8.33676e-03
3 Sigma	1.14587e+00	1.05880e-02	2.00112e-05	-4.45720e-02

Phsp MC-integrate


10000 times fit, 181 signal events, 26 bkg. 9880 of them give good fit.

FCN=79.973 FRO	OM MTGRAD STAT	US=CONVERGED	62 CALLS	63 TOTAL	
1611-731373 1110	EDM=3.1008			RROR MATRIX ACCURATE	
EXT PARAMETER	}		STEP	FIRST	
NO. NAME	VALUE	ERR0R	SIZE	DERIVATIVE	
1 Constant	1.24656e+03	1.57687e+01	5.53411e-02	-7.87055e-07	
2 Mean	-1.15753e-01	1.07642e-02	4.63934e-05	6.50065e-03	
3 Sigma	1.04492e+00	7.95257e-03	8.66852e-06	-9.31871e-02	
FCN=159.39 FRC	OM MIGRAD STAT	US=CONVERGED	70 CALLS	71 TOTAL	
	EDM=3.7734	3e-13 STRAT	EGY= 1 EF	RROR MATRIX ACCURATE	
EXT PARAMETER	₹		STEP	FIRST	
NO. NAME	VALUE	ERR0R	SIZE	DERIVATIVE	
1 Constant	1.75149e+03	2.34510e+01	1.10400e-01	1.79952e-09	
2 Mean	6.87408e-01	9.02634e-03	5.52765e-05	9.70489e-05	
3 Sigma	8.76896e-01	7.61227e-03	1.29998e-05	6.57810e-05	

Fit result

