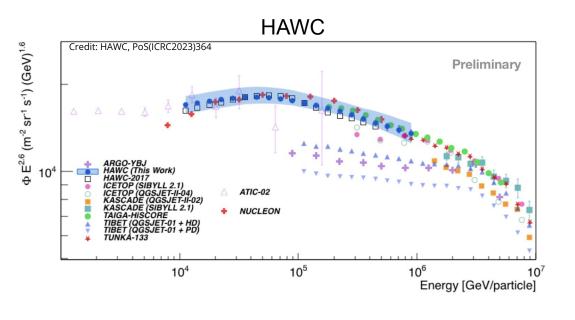
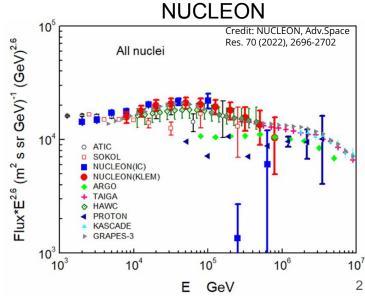

Measurement of the all-particle energy spectrum with the DAMPE mission

Irene Cagnoli*, Ivan De Mitri, Pierpaolo Savina

*e-mail: irene.cagnoli@gssi.it


The all-particle spectrum about the knee



Goal: measurement of the spectrum up to about 1 PeV

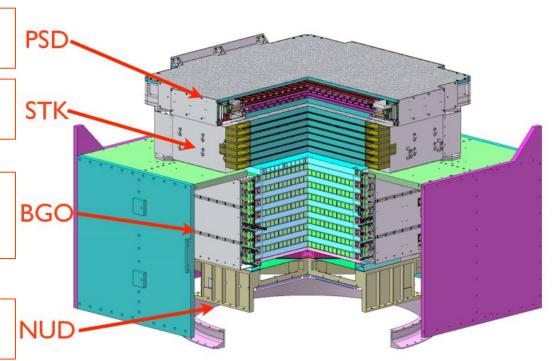
- link between direct and indirect CRs detectors
- search for spectral features in the energy spectrum below the knee
- test theoretical models

The DAMPE detector

Plastic Scintillator Detector (PSD)

- Charge measurement + anti-coincidence for γ ID
- 2 planes (X/Y) of plastic scintillator bars

Silicon TracKer (STK)

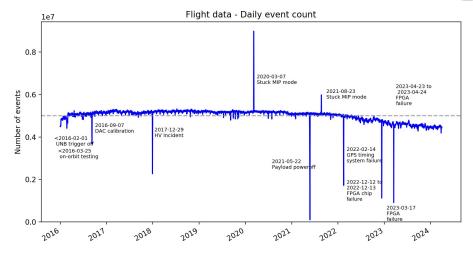

- **Track** reconstruction + additional **charge** measurement
- 6 planes of Si microstrip detectors + 3 W layers

BGO calorimeter (BGO)

- Energy measurement + em/had showers discrimination
- 14 layers of BGO crystal bars
- 32 X_0 and 1.6 λ_1

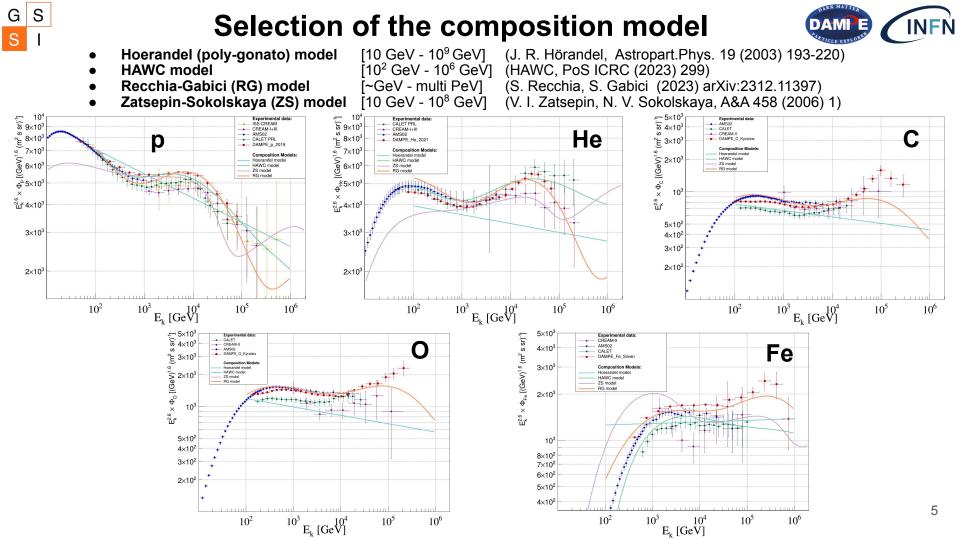
NeUtron Detector (NUD)

- Further em/had showers separation
- 4 boron-doped scintillator tiles


Analysis selection & procedure

Experimental data

- 96 months of flight data (January 2016 - December 2023)
- Total live time ~1.9 10⁸ s

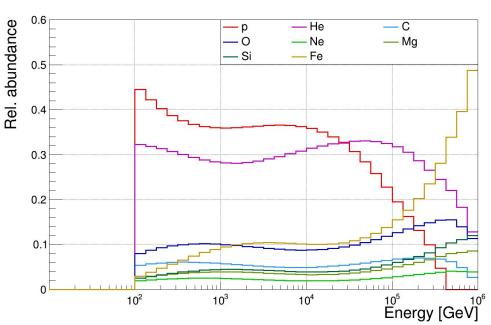


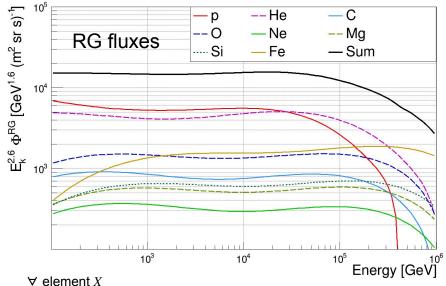
Monte-Carlo simulations

- p, He, C, O, Ne, Mg, Si, Fe
 - [100 GeV 500 TeV] range
 - GEANT4v4.10.5 with FTFP_BERT and EPOS-LHC
- Assumed a mass composition model
 - To build the weighted mean acceptance and response matrix
 - Different models considered to evaluate the model dependence of the output spectra

Selection cuts

- SAA exclusion
- E_{depo} in each BGO layer < 35% E_{BGO}
- HET trigger ON
- E_{BGO} > 100 GeV
- BGO fiducial cuts
 - Reconstructed shower axis inside the fiducial volume
 - ▼ layer: max E_{deno} inside the fiducial volume
- No charge/track selection cuts



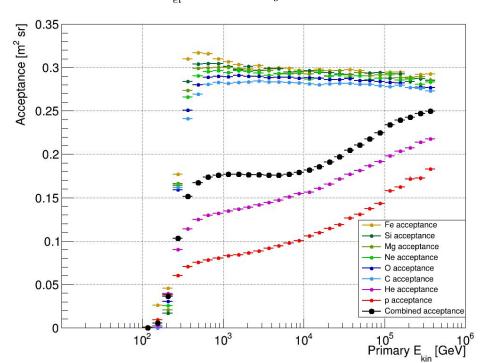

Composition model weights

The **RG model** accurately reproduces the single nuclei spectra: assumed as the composition model for the analysis

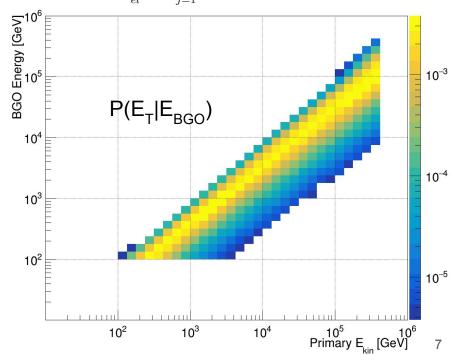
- its flux is described by the RG model
- its rel. abundance is computed and used as a weight to compute the mean acceptance & response matrix

$$w_i^X = \frac{\int_{E_i^{min}}^{E_i^{max}} \Phi_{RG}^X(E) dE}{\sum_{el} \int_{E_i^{min}}^{E_i^{max}} \Phi_{RG}^{el}(E) dE}$$

$$el = p$$
, He, C, O, Ne, Mg, Si, Fe


Acceptance and unfolding

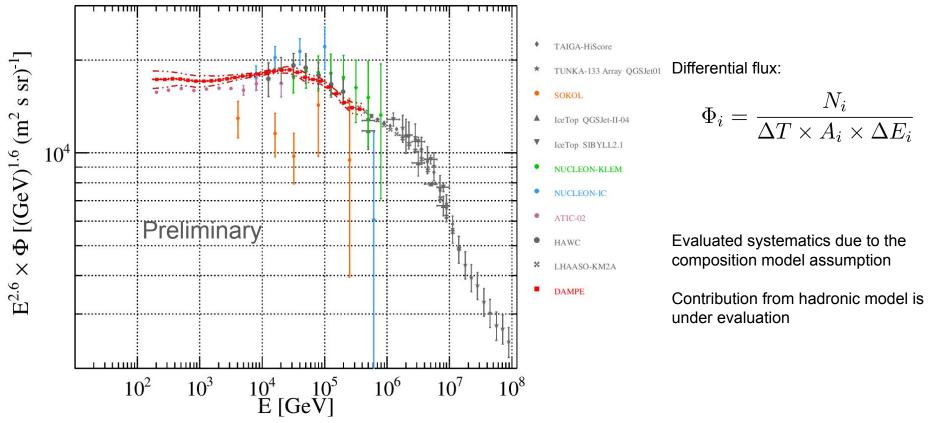
Weighted mean acceptance


$$A_i = \sum_{el} w^{el} \ G^{el}_{gen} \ rac{N^{el}_{sel}(E^i_T)}{N^{el}_{qen}(E^i_T)}$$

Weighted mean response matrix

for the unfolding: iterative Bayesian procedure is adopted to reconstruct the primary energy of the events

$$N_{i} = \sum_{el} w^{el} \sum_{j=1}^{n} P^{el}(E_{T}^{i}|E_{BGO}^{j}) N^{el}(E_{BGO}^{j})$$



All-particle flux

Conclusions

Preliminary result of the all-particle spectrum in the 200 GeV - 0.4 PeV energy range

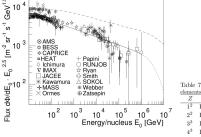
- Loose charge cut selection to increase the statistics
- Assumed a composition model: Recchia-Gabici model
- Systematics evaluation ongoing (limited dependence on the composition model)
- In agreement with other experiments data

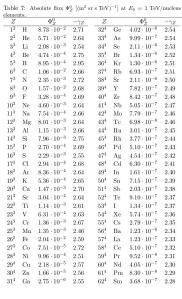
Backup

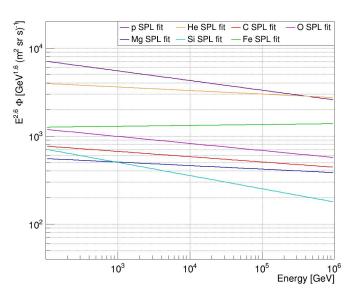
The DAMPE space mission

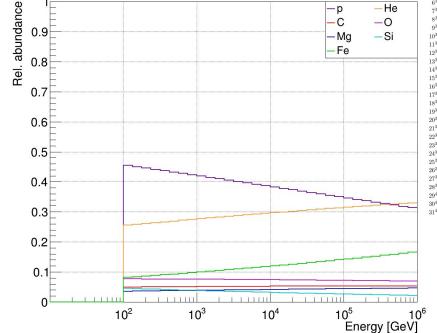
- Collaboration of Chinese, Italian and Swiss scientific institutions
- Launched on 17 December 2015
- The primary scientific goals:
 - Study of cosmic (e- + e-) spectrum
 - Study of CR protons and nuclei
 - High energy gamma ray astronomy
 - Indirect search for dark matter signatures in lepton spectra

•	The main features	Acceptance	~0.3 m ² sr
		Energy resolution	1.2% at 100 GeV (e/γ) < 40% at 800 GeV (nuclei)
		e/γ angular resolution	0.2° at 100 GeV
		Detection	10 GeV - 10 TeV (e/γ) 50 GeV - 200 TeV (nuclei)

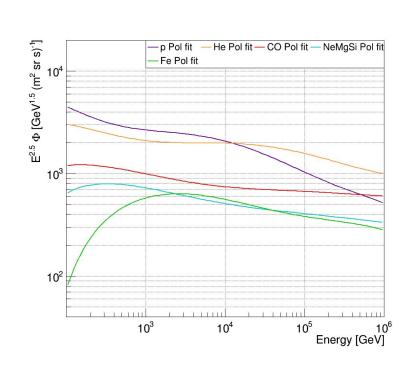


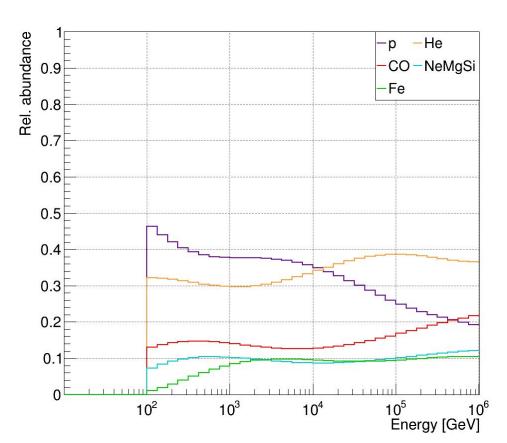

Hoerandel model


DAMI E


- Spectra of individual elements obtained from direct observations and extrapolated to high energies
- Direct experiments data fitted with SPL function

$$\Phi(E) = \Phi^0 \Big(\frac{E}{1TeV}\Big)^{\gamma} \stackrel{\stackrel{\text{N. I}}{\downarrow 0}}{\stackrel{\text{N. I}}{\downarrow 0}{\downarrow 0}} \stackrel{\stackrel{\text{O.EPRICE}}{\downarrow 0}}{\stackrel{\text{HEAT}}{\downarrow 0}{\downarrow 0}} \stackrel{\stackrel{\text{Papinion}}{\downarrow 0}{\downarrow 0}}{\stackrel{\text{N. III}}{\downarrow 0}{\downarrow 0}} \stackrel{\stackrel{\text{O.EPRICE}}{\downarrow 0}}{\stackrel{\text{HEAT}}{\downarrow 0}{\downarrow 0}} \stackrel{\stackrel{\text{N. III}}{\downarrow 0}}{\stackrel{\text{N. IIII}}{\downarrow 0}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIII}}{\downarrow 0}}{\stackrel{\text{N. IIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIII}}{\downarrow 0}}{\stackrel{\text{N. IIII}}{\downarrow 0}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIII}}{\downarrow 0}}{\stackrel{\text{N. IIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIII}}{\downarrow 0}}{\stackrel{\text{N. IIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIII}}{\downarrow 0}}{\stackrel{\text{N. IIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIII}}{\downarrow 0}}{\stackrel{\text{N. IIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIII}}{\downarrow 0}}{\stackrel{\text{N. IIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIII}}{\downarrow 0}}{\stackrel{\text{N. IIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIII}}{\downarrow 0}}{\stackrel{\text{N. IIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIII}}{\downarrow 0}}{\stackrel{\text{N. IIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIII}}{\downarrow 0}}{\stackrel{\text{N. IIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIII}}{\downarrow 0}}{\stackrel{\text{N. IIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIII}}{\downarrow 0}}{\stackrel{\text{N. IIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}}{\stackrel{\text{N. IIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}}{\stackrel{\text{N. IIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIIII}}{\downarrow 0}}{\stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIII}}{\downarrow 0}}{\stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}}} \stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}}{\stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}}} \stackrel{\stackrel{\text{N. IIIII}}{\downarrow 0}}{\stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}}} \stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}}{\stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}}} \stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIIIIIIIII}}{\downarrow 0}} \stackrel{\stackrel{\text{N. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$$





HAWC composition model

• Derived by fitting BPL functions to data from ATIC-2, CREAM, PAMELA, AMS-2, NUCLEON, CALET, DAMPE, KASCADE

