

Measurement of the all-particle energy spectrum with the DAMPE mission

Irene Cagnoli*, Ivan De Mitri, Pierpaolo Savina on behalf of the DAMPE collaboration *e-mail: irene.cagnoli@gssi.it

The all-particle spectrum towards the knee

Scientific motivations for measuring the all-particle spectrum up to ~1 PeV

- Use loose charge cut selection
 - to **minimize cross-contamination** among individual element spectra, which could arise from a sum of them
 - to increase the statistics and the energy reach
- Establish a link between direct and indirect CRs experiments: facilitate a unified understanding of CR properties across different energy ranges
- **Cross-calibration** with ground-based measurements (hadronic interaction models and other systematics)

The DAMPE space mission

- Collaboration of Chinese, Italian and Swiss scientific institutions
- Launched on 17 December 2015
- The primary scientific goals:
 - Study of (e⁻ + e⁺), CR protons and nuclei spectra
 - High energy gamma ray astronomy
 - Indirect search for dark matter signatures in lepton spectra

•	The main features	Acceptance	~0.3 m ² sr		
		Energy resolution	1.2% at 100 GeV (e/γ) < 40% at 800 GeV (nuclei)		
		e/γ angular resolution	0.2° at 100 GeV		
		Detection	10 GeV - 10 TeV (e/γ) 50 GeV - 200 TeV (nuclei)		

The DAMPE detector

Plastic Scintillator Detector (PSD)

- Charge measurement + anti-coincidence for γ ID
- 2 planes (X/Y) of plastic scintillator bars

Silicon TracKer (STK)

- **Track** reconstruction + additional **charge** measurement
- 6 planes of Si microstrip detectors + 3 W layers

BGO calorimeter (BGO)

- Energy measurement + em/had showers discrimination
- 14 layers of BGO crystal bars
- 32 X_0 and 1.6 λ_1

NeUtron Detector (NUD)

- Further em/had showers separation
- 4 boron-doped scintillator tiles

Analysis selection & procedure

300 Z

200

-100

-200

-300

-400F

CALO

400 E

PSD

10 1 10⁻¹

 10^{2}

- 96 months of flight data (January 2016 - December 2023)
- Total live time ~1.9 10⁸ s

- p, He, C, O, Ne, Mg, Si, Fe
 - [100 GeV 500 TeV] range
 - GEANT4v4.10.5 with FTFP_BERT and EPOS-LHC
- Assumed a mass composition model
 - To build the weighted mean acceptance and response matrix
 - Different models considered to evaluate the model dependence of the output spectra

Selection cuts

SAA exclusion

Y view - BGO Energy: 46847.3 GeV

- E_{depo} in each BGO layer < 35% E_{BGO}
- HET trigger ON
- E_{BGO} > 100 GeV
- BGO fiducial cuts
 - Reconstructed shower axis inside the fiducial volume
 - \forall layer: max $\mathsf{E}_{\mathsf{depo}}$ inside the fiducial volume

300

200

-100

-200

-300

10 1 [MeV] 10⁶

10⁵

CALO

400 Y[mm]

200

• No charge/track selection cuts

200

Composition models

Model	Application E range	Reference		
Hoerandel (poly-gonato) model	[10 GeV - 10 ⁹ GeV]	J. R. Hörandel, Astropart.Phys. 19 (2003) 193-220		
HAWC model	[10 ² GeV - 10 ⁶ GeV]	HAWC, PoS ICRC (2023) 299		
Recchia-Gabici (RG) model	[~GeV - multi PeV]	S. Recchia, S. Gabici (2023) arXiv:2312.11397		
Zatsepin-Sokolskaya (ZS) model	[10 GeV - 10 ⁸ GeV]	V. I. Zatsepin, N. V. Sokolskaya, A&A 458 (2006) 1		
GST model	[10 ⁵ GeV - 10 ¹¹ GeV]	T. K. Gaisser, T. Stanev, S. Tilav, Front. Phys. 8 (2013) 748–758		

Implementation of the Recchia-Gabici model

0.6

abundance -He -C -Ne -Ma -Fe Si 0.5 Rel. 0.4 0.3 0.2 0. 10^{2} 10^{3} 10⁵ E_k [GeV] 10^{4}

Relative abundances

 \forall element X

- its flux is described by the RG model
- its rel. abundance is computed and used as a weight to compute the mean acceptance & response matrix

 $w_i^X = \frac{\int_{E_i^{max}}^{E_i^{max}} \Phi_{RG}^X(E) dE}{\sum_{el} \int_{E_i^{max}}^{E_i^{max}} \Phi_{RG}^{el}(E) dE}$

Acceptance and unfolding

All-particle flux

Differential flux: $\Phi_i = \frac{N_i}{\Delta T \times A_i \times \Delta E_i}$

- Evaluated systematics
 - Unfolding
 - Composition model
- Contribution from hadronic model is under evaluation
- In agreement with indirect experiments results
- Structure at tens TeV (convolution of the softening of different nuclei?)
- Work in progress to extend the measurement up to 0.7/0.8 PeV

All-particle flux

- Differential flux: $\Phi_i = \frac{N_i}{\Delta T \times A_i \times \Delta E_i}$
- Evaluated systematics
 - Unfolding
 - Composition model
- Contribution from hadronic model is under evaluation
- In agreement with indirect experiments results
- Structure at tens TeV (convolution of the softening of different nuclei?)
- Work in progress to extend • the measurement up to 0.7/0.8 PeV

Conclusions

Preliminary result of the all-particle spectrum in the 200 GeV - 0.4 PeV

energy range

- Loose charge cut selection to increase the statistics
- Assumed a composition model: Recchia-Gabici model
- Systematics evaluation ongoing (limited dependence on the composition model)
- In agreement with other experiments data

Backup

G S HAWC composition model

• Derived by fitting BPL functions to data from ATIC-2, CREAM, PAMELA, AMS-2, NUCLEON, CALET, DAMPE, KASCADE

ZS composition model

- 3 different classes of sources: each class prod. a spectrum for 5 nuclear group that
 - is simple power-law after termination of effective acceleration
 - with specific spectral-index γ_k & Rmax
- Nuclear groups: p, He, CNO, Ne-S, Fe-group(Z>17)
- Solar modulation is taken into account

G S

Model fitted on experimental direct & EAS data

S Hoerandel composition model

G

- Spectra of individual elements obtained from direct observations and extrapolated to high energies
- Direct experiments data fitted with SPL function $\Phi(E) = \Phi^0 \left(\frac{E}{1TeV}\right)^{\gamma}$

GST composition model

G S

- Performed 2 different fits to experimental data
 - each assuming 3 populations of particles
 - different assumptions for the rigidity cut off for each population
 - 3 populations: pop. 1 & 2 of galactic origin, pop. 3 is extragalactic
 - Each population (j) is contains 5 groups of nuclei (i)

$$\phi_i(E) = \sum_{j=1}^3 a_{i,j} E^{-\gamma_{i,j}} \times \exp\left[-\frac{E}{Z_i R_{c,j}}\right]$$

	р	He	С	Ο	Fe
Pop. 1:	7000	3200	100	130	60
$R_c = 120 \text{ TV}$	1.66 1	1.58	1.4	1.4	1.3
Pop. 2:	150	65	6	7	2.3
$R_c = 4 \text{ PV}$	1.4	1.3	1.3	1.3	1.2
Pop. 3:	14				0.025
$R_c = 1.3 \text{ EV}$	1.4				1.2

Combined acceptance

Weighted mean acceptance with RG model

All-particle flux

Differential flux:

$$\Phi_i = \frac{N_i}{\Delta T \times A_i \times \Delta E_i}$$

Evaluated systematics

- Unfolding
- Composition model

Contribution from hadronic model is under evaluation