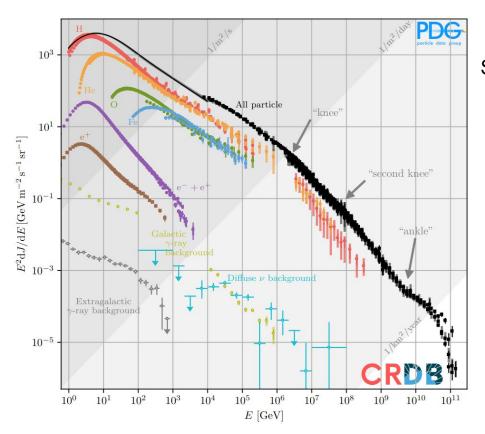


Measurement of the all-particle energy spectrum with the DAMPE mission

Irene Cagnoli*, Ivan De Mitri, Pierpaolo Savina on behalf of the DAMPE collaboration *e-mail: irene.cagnoli@gssi.it



The all-particle spectrum towards the knee

Scientific motivations for measuring the all-particle spectrum up to ~1 PeV

- Combine all particle species using a loose charge cut selection
 - to minimize cross-contamination among individual element spectra
 - to increase the statistics and reach higher energies than when analysing individual particles species
- Establish a link between direct and indirect CRs **experiments**: facilitate a unified understanding of CR properties across different energy ranges
- **Cross-calibration** with ground-based measurements (hadronic interaction models and other systematics)

The DAMPE space mission

DAMI E

- Collaboration of Chinese, Italian and Swiss scientific institutions
- Launched on 17 December 2015
- The primary **scientific goals**:
 - Study of (e⁻ + e⁺), CR protons and nuclei spectra
 - High energy gamma ray astronomy
 - Indirect search for dark matter signatures in lepton spectra

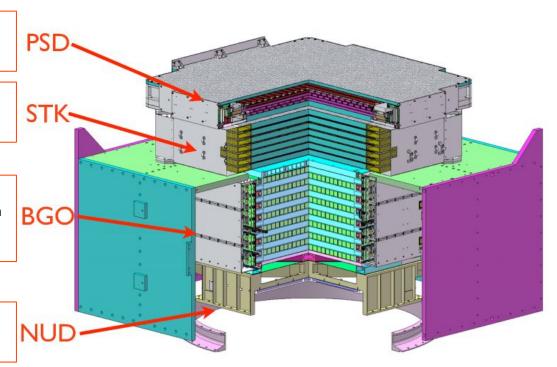
•	The main features	Acceptance	>0.1 m ² sr		
		Energy resolution	1.2% at 100 GeV (e/γ) < 40% at 800 GeV (nuclei)		
		e/γ angular resolution	0.2° at 100 GeV		
		Detection	10 GeV - 10 TeV (e/γ) 50 GeV - 200 TeV (nuclei)		

The DAMPE detector

Plastic Scintillator Detector (PSD)

- Charge measurement + anti-coincidence for γ ID
- 2 planes (X/Y) of plastic scintillator bars

Silicon TracKer (STK)


- **Track** reconstruction + additional **charge** measurement
- 6 planes of Si microstrip detectors + 3 W layers

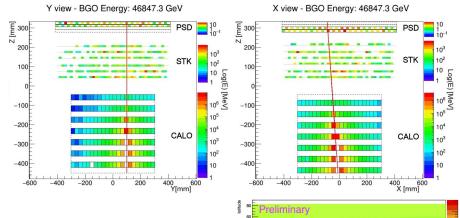
BGO calorimeter (BGO)

- Energy measurement + em/had showers discrimination
- 14 layers of BGO crystal bars
- 32 X_0 and 1.6 λ_1

NeUtron Detector (NUD)

- Further em/had showers separation
- 4 boron-doped scintillator tiles

Analysis selection & procedure



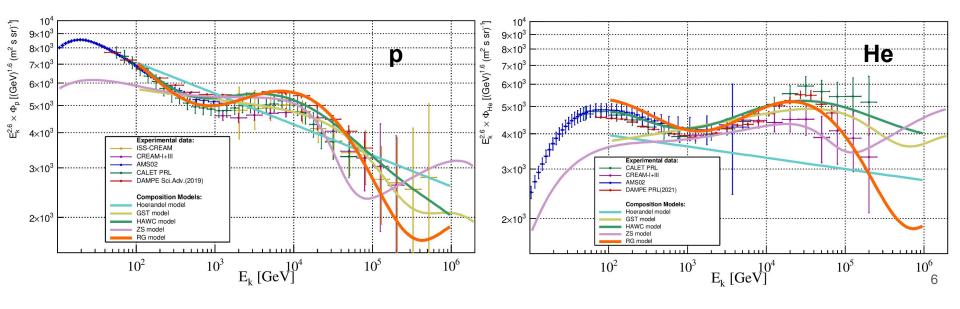
Experimental data

- 96 months of flight data (January 2016 December 2023)
- Total live time ~1.9 10⁸ s

Monte-Carlo simulations

- p, He, C, O, Ne, Mg, Si, Fe
 - [100 GeV 500 TeV] range
 - GEANT4v4.10.5 with FTFP_BERT and EPOS-LHC
- Assumed a mass composition model
 - To build the weighted mean acceptance and response matrix
 - Different models considered to evaluate the model dependence of the output spectra

Selection cuts


- SAA exclusion
- E_{depo} in each BGO layer < 35% E_{BGO}
- HET trigger ON
- E_{BGO} > 100 GeV
- BGO fiducial cuts
 - Reconstructed shower axis inside the fiducial volume
 - ullet layer: max $E_{
 m depo}$ inside the fiducial volume
- No charge/track selection cuts

Composition models

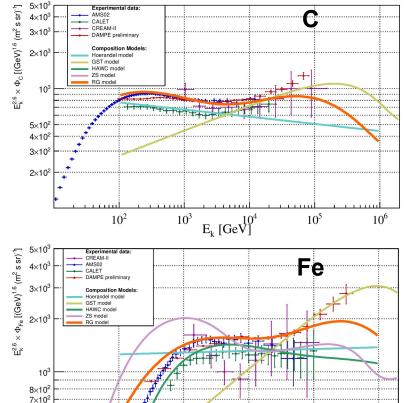
Model	Application E range	Reference		
Hoerandel (poly-gonato) model	[10 GeV - 10 ⁹ GeV]	J. R. Hörandel, Astropart.Phys. 19 (2003) 193-220		
HAWC model	[10 ² GeV - 10 ⁶ GeV]	HAWC, PoS ICRC (2023) 299		
Recchia-Gabici (RG) model	[~GeV - multi PeV]	S. Recchia, S. Gabici (2023) arXiv:2312.11397		
Zatsepin-Sokolskaya (ZS) model	[10 GeV - 108 GeV]	V. I. Zatsepin, N. V. Sokolskaya, A&A 458 (2006) 1		
GST model	[10 ⁵ GeV - 10 ¹¹ GeV]	T. K. Gaisser, T. Stanev, S. Tilav, Front. Phys. 8 (2013) 748–758		

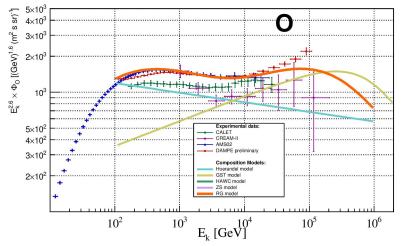
6×10²

 4×10^{2}

 10^{2}

 10^{3}

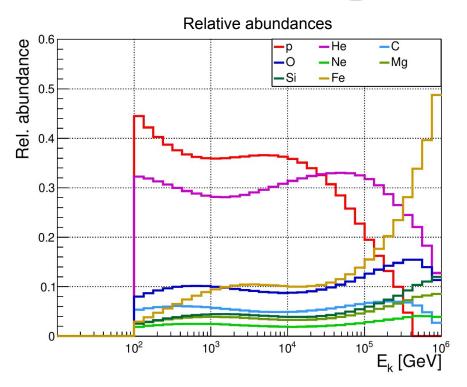

 10^{5}


 10^{6}

Composition models

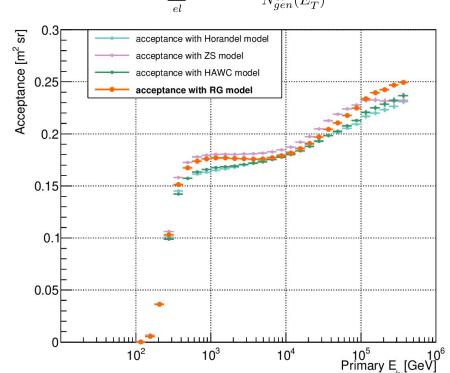

The **RG model** accurately reproduces the single nuclei spectra: assumed as the composition model for the analysis

Implementation of the Recchia-Gabici model



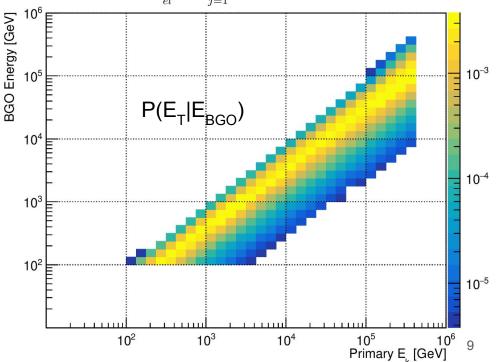
- its flux is described by the RG model
- its rel. abundance is computed and used as a weight to compute the mean acceptance & response matrix

$$w_{i}^{X} = \frac{\int_{E_{i}^{min}}^{E_{i}^{max}} \Phi_{RG}^{X}(E) dE}{\sum_{el} \int_{E_{i}^{min}}^{E_{i}^{max}} \Phi_{RG}^{el}(E) dE}$$


$$el = p$$
, He, C, O, Ne, Mg, Si, Fe

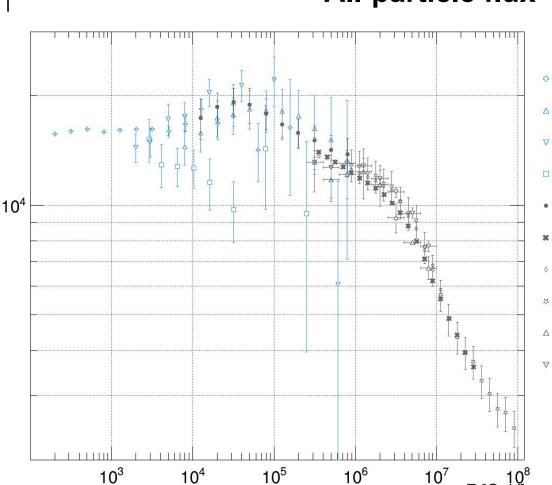
Acceptance and unfolding

Weighted mean acceptance


$$A_i = \sum_{el} w^{el} \ G^{el}_{gen} \ \frac{N^{el}_{sel}(E^i_T)}{N^{el}_{gen}(E^i_T)}$$

Weighted mean response matrix

for the unfolding: iterative Bayesian procedure is adopted to reconstruct the primary energy of the events


$$N_{i} = \sum_{el} w^{el} \sum_{j=1}^{n} P^{el}(E_{T}^{i}|E_{BGO}^{j}) N^{el}(E_{BGO}^{j})$$

 ${\sf E}^{2.6} imes \Phi \, [({\sf GeV})^{1.6} \, ({\sf m}^2 \, {\sf s} \, {\sf sr})^{ ext{-1}}]$

All-particle flux

Differential flux:

$$\Phi_i = \frac{N_i}{\Delta T \times A_i \times \Delta E}$$

NUCLEON-IC Evaluated systematics

ATIC-02

SOKOL

HAWC

LHAASO-KM2A

TAIGA-HiScore

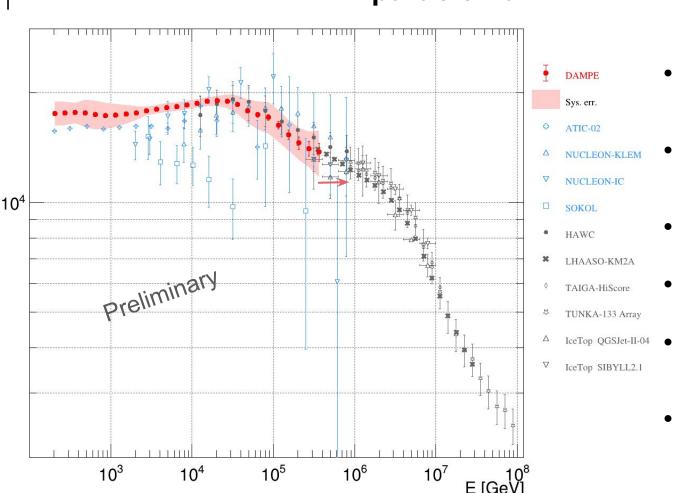
TUNKA-133 Array

IceTop QGSJet-II-04

IceTop SIBYLL2.1

NUCLEON-KLEM

- Unfolding
- Composition model
- model is under evaluation


Contribution from hadronic

- In agreement with indirect experiments results
- Structure at tens TeV (convolution of the softening of different nuclei?)
- Work in progress to extend the measurement up to 0.7/0.8 PeV

 ${\sf E}^{2.6} imes \Phi \, [({\sf GeV})^{1.6} \, ({\sf m}^2 \, {\sf s} \, {\sf sr})^{-1}]$

All-particle flux

- Differential flux:
- Evaluated systematics

model is under evaluation

- Unfolding
- Composition model
- Contribution from hadronic
- In agreement with indirect TAIGA-HiScore experiments results TUNKA-133 Array
- IceTop SIBYLL2.1 of different nuclei?)
 - Work in progress to extend the measurement up to 0.7/0.8 PeV

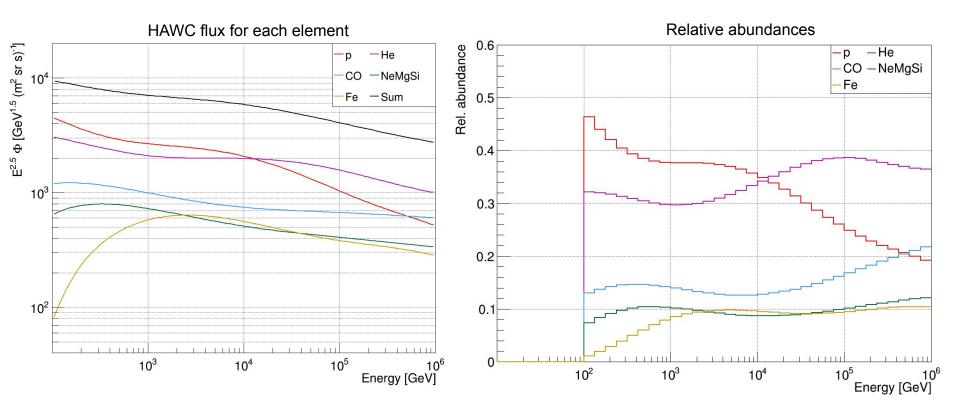
Structure at tens TeV

(convolution of the softening

Conclusions

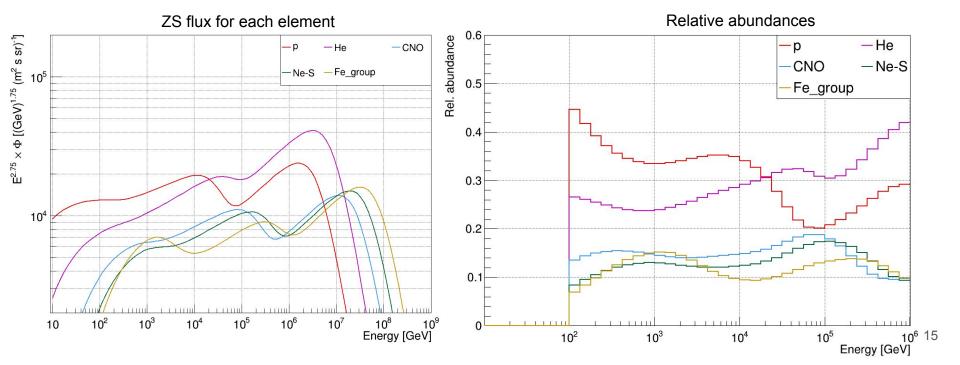
Preliminary result of the all-particle spectrum in the 200 GeV - 0.4 PeV energy range

- Loose charge cut selection -> increase the statistics -> reach the PeV energies
- Results clearly show a change of slope around tens of TeV, most probably due to the softening of different components
- Full Systematics evaluation still ongoing
- Completely filling the gap between direct and indirect measurements.


Backup

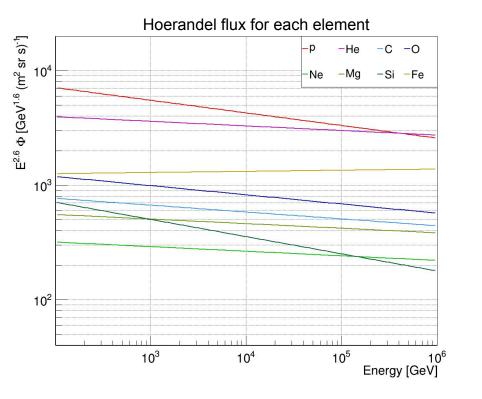
HAWC composition model

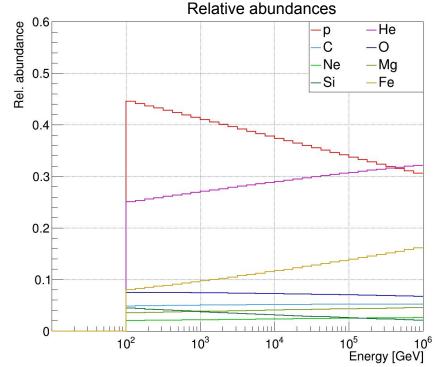
• Derived by fitting BPL functions to data from ATIC-2, CREAM, PAMELA, AMS-2, NUCLEON, CALET, DAMPE, KASCADE



ZS composition model

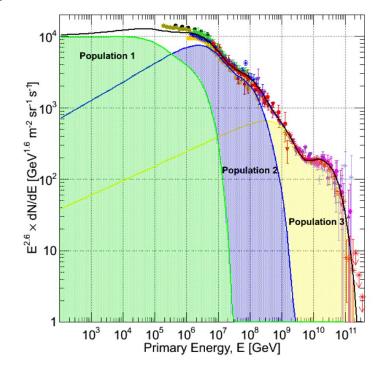
- 3 different classes of sources: each class prod. a spectrum for 5 nuclear group that
 - o is simple power-law after termination of effective acceleration
 - with specific spectral-index γ_k & Rmax
- Nuclear groups: p, He, CNO, Ne-S, Fe-group(Z>17)
- Solar modulation is taken into account
- Model fitted on experimental direct & EAS data




Hoerandel composition model

- Spectra of individual elements obtained from direct observations and extrapolated to high energies
- Direct experiments data fitted with SPL function $\Phi(E) = \Phi^0 \left(\frac{E}{1TeV}\right)^{\gamma}$

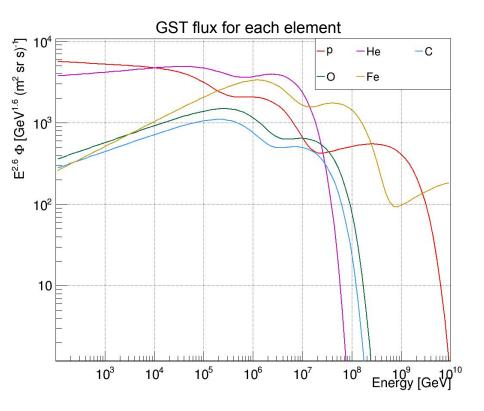
GST composition model

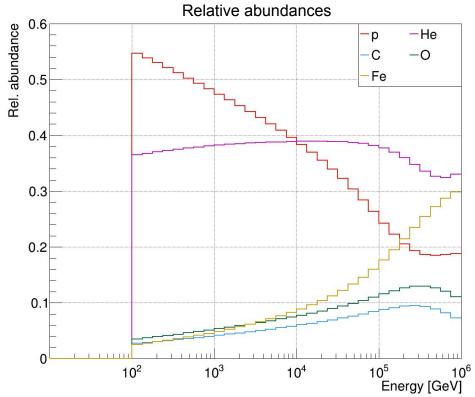


- Performed 2 different fits to experimental data
 - o each assuming 3 populations of particles
 - different assumptions for the rigidity cut off for each population
 - 3 populations: pop. 1 & 2 of galactic origin, pop. 3 is extragalactic
 - Each population (j) is contains 5 groups of nuclei (i)

$$\phi_i(E) = \sum_{j=1}^3 a_{i,j} E^{-\gamma_{i,j}} \times \exp\left[-\frac{E}{Z_i R_{c,j}}\right]$$

-	р	He	С	О	Fe
Pop. 1:	7000	3200	100	130	60
$R_c = 120 \text{ TV}$	1.66 1	1.58	1.4	1.4	1.3
Pop. 2:	150	65	6	7	2.3
$R_c = 4 \text{ PV}$	1.4	1.3	1.3	1.3	1.2
Pop. 3:	14				0.025
$R_c = 1.3 \text{ EV}$	1.4				1.2





GST composition model

