

#### **COSPAR 2024** 45th Scientific Assembly July 13-21 2024, BEXCO, Busan, Korea



Direct Measurement of the Cosmic-Ray Iron Spectrum with the Dark Matter Particle Explorer

> 徐志会(Zhi-Hui Xu) xuzh@impcas.ac.cn nstitute of Modern Physics(IMP), CAS

> > 2024-07-14 Busan Korea

DAM

#### ≻Cosmic Ray

- >Dark Matter Particle Explorer (DAMPE)
- ≻Data Used
- > Preselection
- **≻**Particle Identify
- Spectrum reconstruction
- Efficiency calibration and Error analysis
  Summary

# Cosmic Ray



#### cosmic ray spectrum

- > Knee (10<sup>6</sup> GeV/n), Ankle (10<sup>9</sup> GeV/n), GZK cutoff (5  $\times$  10<sup>10</sup> GeV/n)
- Spans 12 orders of magnitude in energy. Spans 32 orders of magnitude in flux



 ${\sim}10\%$  of SN explosion energy is sufficient to meet cosmic ray acceleration power: 10^{41} erg s^{-1}



Cosmic ray propagation in galaxy



Cosmic ray detection

### Iron Spectrum



![](_page_3_Figure_2.jpeg)

Normalization energy spectrum of primary nuclei

 The overall energy spectrum of CALET is about 20% lower than AMS-02.

◆ ATIC (FLUKA), CALET(EPICS-DPMJET-III, FLUKA)

### **Dark Matter Particle Explorer**

![](_page_4_Figure_1.jpeg)

China`s first space observatory Lunch time: 2015.12.17 Solar synchronous orbit Orbit altitude : 500 km Orbital period : 95 min

#### **DAMPE** Main mission

- Dark Matter indirect detection
- ◆ Cosmic ray physics
- Gamma ray astronomy
- New physics

#### DAMPE Collaboration

![](_page_4_Picture_9.jpeg)

Purple Mountain Observatory, National Space Science Center, Inst. High Energy Physics, Inst. Modern Physics, University of Science and Technology

![](_page_4_Picture_11.jpeg)

Geneva University

![](_page_4_Picture_13.jpeg)

| Parameter                             | Value                                              |
|---------------------------------------|----------------------------------------------------|
| Energy range of gamma-rays/electrons  | 5 GeV to 10 TeV                                    |
| Energy resolution(electron and gamma) | 1.5% at 800 GeV                                    |
| Energy range of protons/heavy nuclei  | 50 GeV to 500 TeV                                  |
| Energy resolution of protons          | 40% at 800 GeV                                     |
| Eff. area at normal incidence (gamma) | 1100 cm <sup>2</sup> at 100 GeV                    |
| Geometric factor for electrons        | $0.3 \text{ m}^2 \text{ sr above } 30 \text{ GeV}$ |
| Photon angular resolution             | 0.1 degree at 100 GeV                              |
| Field of View                         | 1.0 sr                                             |

#### DAMPE instrument

![](_page_5_Figure_1.jpeg)

BGO: Energy, Track, Trigger System

![](_page_5_Figure_3.jpeg)

![](_page_5_Picture_4.jpeg)

**STK** :charge, track

![](_page_5_Figure_6.jpeg)

**NUD** Enhancing the Distinction Between Hadronic and Electromagnetic Showers

DAMPE Iron Spectrum. Zhi-Hui Xu. IMP

## Outline

- $\geq E_{dep} > 10 \text{ GeV}$
- ≻Has STK or BGO track
- STK track selection; (if there is no STK track, use BGO track instead)
  - a)  $chi^2/ndf < 50$  & Angle to BGO track  $< 15^{\circ}$
  - b) Match with MGO shower
  - c) Selected the track with max Energy deposition in STK detector
  - d) Max  $E_{Ratio} < 0.35$  & Track Pass PSD top and BGO buttle
- PSD selection
  - (1) PASS two layer PSD,  $Q_0 > 10 \& Q_1 < 10$

![](_page_6_Figure_11.jpeg)

ML track

![](_page_6_Figure_13.jpeg)

#### Charge reconstruction

Charge Readout Correction

![](_page_7_Figure_2.jpeg)

Charge Readout Offset:  $\delta_i = Fe_P_i - 26_\circ$ 

Correction for Each PSD Bar:

 $C'_i = C_i - \delta i, \ i = 0, \ \cdots, \ 81,$ 

![](_page_7_Figure_6.jpeg)

Charge Peak Values Fitted with Different PSD Bars

![](_page_7_Figure_8.jpeg)

![](_page_7_Figure_9.jpeg)

 $C'' = (C'_i - Fe_P_i) \times 6/(Fe_P_i - Ca_P_i) + 26, \ i = 0, \ \dots, \ 3.$ 

Enhance Charge resolution and evaluate of contamination

## Particle Identify

![](_page_8_Figure_1.jpeg)

#### Templet Fit and contamination evaluate

### Efficiency Calibration

![](_page_9_Figure_1.jpeg)

#### Spectrum reconstruction

![](_page_10_Figure_1.jpeg)

Primary Energy  $C_i$  with Events  $n(C_i)$ , Deposited Energy  $E_j$  with events  $n(E_j)$ .

$$n(C_i) = \sum_{j=1}^{n_E} M_{ij} n(E_j),$$

$$M_{ij} = \frac{P(E_j|C_i)n_0(C_i)}{\epsilon_i \sum_{l=1}^{n_C} P(E_j|C_l)n_0(C_l)}$$

Where  $P(E_j|C_i)$  is the response matrix.

**Final Spectrum** 

$$\Phi(E_i, E_i + \Delta E_i) = \frac{N_{inc,i}}{\Delta E_i A_{eff,i} \Delta t},$$

#### DAMPE Iron Spectrum

![](_page_11_Figure_1.jpeg)

DAMPE Iron Spectrum. Zhi-Hui Xu. IMP

# Summary

- DAMPE has been in orbit for nearly eight years, and the detector is currently operating well.
- >DAMPE exhibits excellent charge resolution, allowing for precise identification and accurate energy spectrum measurements of iron nuclei particles.
- Preliminary analysis has yielded the iron nucleus energy spectrum in the range of 1 TeV to 100 TeV. With further refinement and in-depth analysis, it is anticipated that the energy spectrum measurements can be extended to several hundred TeV.

Shank you for your attention

# Backup (not show in COSPAR)

![](_page_13_Figure_1.jpeg)