

45th COSPAR Scientific Assembly

Busan, South Korea, 13-21 July 2024

Dark Matter Particle Explorer (DAMPE) 8 years in space

Fan, Yi-Zhong (范一中) Purple Mountain Observatory, Chinese Academy of Sciences on behalf of the DAMPE Collaboration

July 14th, 2024

- DAMPE mission
- Detector performance
- Latest physical results
- Summary

DAMPE Collaboration

DAMPE ("Wukong"悟空) is a satellite-borne particle detector proposed in the framework of the Strategic Pioneer Program on Space Science, promoted by the Chinese Academy of Sciences (CAS).

17th Dec. 2015 @Jiuquan

- Altitude: ~ 500 km
- Inclination: ~ 97
- Period: ~ 95 minutes
- Orbit: sun-synchronous

CHINA

- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou
- ITALY
 - INFN Perugia and University of Perugia
 - INFN Bari and University of Bari
 - INFN Lecce and University of Salento
 - INFN LNGS and Gran Sasso Science Institute
- SWITZERLAND
 - University of Geneva

Scientific objects

Neutrinos

OSPAR 2024 Fan Yi-Zhong I Latest results from the DAMPE experiment -30°

DAMPE detector

PSD Plastic Scintillator Detector	BGO Calorimeter	Parameter	Value
		Energy range (e/γ)	5 GeV to 10 TeV
		Energy resolution (e/γ)	1.5% at 800 GeV
		Energy range (p/ion)	50 GeV to 500 TeV
		Energy resolution (p)	40% at 800 GeV
		Geometric factor (e)	$0.3 \text{ m}^2 \text{ sr above } 30 \text{ GeV}$
		Angular resolution (γ)	0.1 degree at 100 GeV
		Field of view	1.0 sr
		Weight: 1.4 tons in total	
Neutron Detector	r	Power: ~400 W	

- PSD: Charge measurement via dE/dx and ACD for photons
- STK: Track, charge, and photon converter
- BGO: Energy measurement, particle (e/p) identification
- NUD: Additional e/p identification in high energy range

(Chang et al. Astropart.Phys. 2017, 95, 6-24)

COSPAR 2024 Fan Yi-Zhong I Latest results from the DAMPE experiment

Plastic Scintillator Detector (PSD)

Scintillator couter

Voltage divid

Readout PM

Scintillator bar

PSD

- 2 double-layers (x,y) of 88.4 × 2.8 × 1 cm³ bars
- Active area: 82 × 82 cm²
- Charge Measurement: Z = 1-28
- γ anti-coincidence

Silicon-Tungsten Tracker (STK)

STK

- 6 double-layers (x,y)
- Active area: 76 × 76 cm²
- 3 W layers for γ ->e± conversion
- Position resolution: ~50 μm
- γ angular resolution: 0.1 ° 0.5 °

BGO Calorimeter

BGO

- 7 double-layers (x,y), 308 BGO bars
- 31.5 X₀ thickest in space
- Active area: 60 × 60 cm²
- Energy resolution: $1\% @ TeV (e/\gamma)$
- \bullet e/ γ up to 10 TeV; p/ions up to sub-PeV

NeUtron Detector (NUD)

NUD

- 4 plastic scintillators (B)
- Active area: 60 cm x 60 cm
- Additional e/p separation $n + {}^{10}B \rightarrow \alpha + {}^{7}Li + \gamma$

On-orbit operation

OSPAR 2024 Fan Yi-Zhong I Latest results from the DAMPE experiment

Charge measurement

- The Point-Spread Function (PSF) is calibrated with photons from pulsars and stacked AGNs
- Angular resolution 0.3 degrees @ 10 GeV

See talk by K.K. Duan

Energy calibration

Beam tests at CERN PS & SPS

- Electrons (protons): few GeV 250 (400) GeV, ions: 40 GeV/n, 75 GeV/n
- Energy resolution: ~1% (e/ γ) at 100 GeV and above, 20% 30% for protons/ions

 $_{\odot}$ On-orbit energy scale verified with geomagnetic cut-off $_{\odot}$ Good linearity to ~2.5 (100) TeV with electron (nuclei) events

OSPAR 2024 Fan Yi-Zhong I Latest results from the DAMPE experiment

Physical results

e⁺+e⁻ spectrum

• Excellent energy resolution and powerful e/p identification

proton, Helium

- * The spectra of CR proton and helium measured by DAMPE show a very similar softening feature at tens of TeVs.
- * The softening energies are well consistent with a dependence on particle charge, although a dependence on particle mass can not be ruled out yet.
- * The results implicate a Z-dependent spectral break (e.g. "knee") in CR nuclei, which is likely an imprint of a nearby cosmic ray source.

Work in process:

Updates and new approaches on detector calibration. New track & charge reconstruction with ML method.

proton+Helium (new)

Independent analysis of p+He spectrum in the collaboration

Very low contamination + Very large statistics => High upper limit of measurement

proton+Helium (new)

Independent analysis of p+He spectrum in the collaboration

- Link between direct/indirect CR measurements
- Hint of new spectral hardening at ~150 TeV

Carbon and Oxygen

• Preliminary DAMPE measurements confirm the hardening structure at several hundreds of GeV/n observed by previous experiments.

CNO group

The spectrum of CNO group in cosmic rays

- The spectrum of CNO group can be measured up to 500 TeV
- ◎ A spectral hardening at ~9 TeV with 5.5 sigma of CL. is observed.

 Preliminary iron spectrum up to 10 TeV/n shows a significant hardening around 1 TeV/n. Evaluation of systematics is in progress ...

See talk by Z.H. Xu

Secondries (Li, Be, B)

All particle

 ${\scriptstyle \odot}$ Different composition models are evaluated and applied in the analysis.

Preliminary all-particle spectrum shows a "knee" feature at tens of

TeV, most probably due to the softening of different components.

See talk by I. Cagnoli

Heliosphere physics

New FD features observed for the relation: recovery time v.s. decrease amplitude

Fractional Charged Particles (FCP)

DAMPE provides the most stringent constrains on the FCP flux upper limit in space at a few GeV. <u>note:</u> Ground-based results — above hundreds GeV

Gamma-ray astronomy

Welcome to use DAMPE photon data!

Point source catalog

Source type	number
AGN	241
Pulsar	62
SNR/PWN	14
Binary	5
Global cluster	4
Unassociated	10
Total	336

https://dampe.nssdc.ac.cn/dampe/dataguerysc.php http://dgdb.pmo.ac.cn/dampe/

Fermi Bubbles

Gamma-ray line search

DAMPE collaboration & Y.F Liang, Science Bulletin, 67, 679 (2022)

- Gamma-ray line is the "smoking gun" signal for dark matter indirect search.
- The energy resolution of DAMPE is excellent for searching gamma-ray lines.
- We searched for the lines with 5 years data beween 5 and 450 GeV. No significant line signals are detected.
- More data is currently being analyzed.

R86: Isothermal (annihilation)

DAMPE 5.0 yr: stat+sys

Fermi P8 5.8 yr: stat+sys

DAMPE 5.0 yr: stat

95% Containmen

68% Containmen

 m_{γ} (GeV)

Summary

DAMPE mission

- Smooth on-orbit operation for 8.5 years
- Excellent performance and stability
- Unique for TeV-PeV Cosmic Ray detection in space

Physical programs

- e⁺+e⁻ direct observation of TeV-break
- p & He universal softening at 15 TV and approaching the PeV frontier
- B/C & B/O ratio observation of 100 GeV break
- \bullet C, O, Fe observation of hardening at hundreds of GeV/n
- Li, Be, B and more in progress ...
- \bullet Heliophysics FD observations with CRE flux
- \bullet $\gamma\text{-ray}$ sky, Fermi Bubbles, GCE, DM search, ...

DAMPE talks in COSPAR2024

- A. Tykhonov CR proton flux towards PeV energies with DAMPE
- Z.F. Chen Spectral Analysis of Lithium, Beryllium and Boron Nuclides with DAMPE
- D. Kyratzis Latest Results on Cosmic Ray Carbon and Oxygen with the DAMPE space mission
- P.X. Ma Combined analysis of CNO group with DAMPE
- Z.H. Xu Direct Measurement of the Cosmic-Ray Iron Spectrum with the Dark Matter Particle Explorer
- I. Cagnoli Measurement of the all-particle energy spectrum with the DAMPE mission
- K.K. Duan Recent Gamma-ray Results from DAMPE

