Jet Tomography in High Energy Heavy-Ion Collisions

Yayun He South China Normal University South China University of Technology

USTC-PNP-Nuclear Physics Mini Workshop Series Hefei, 2024-06-16

Jet Production in HIC

Jet: hard probe, perturbatively calculable, multiple scales ranging from 1 GeV to 1 TeV

Within the factorized parton model in pQCD,

 $\frac{d\sigma_{AA}^{jet}}{dp_T d\eta} = N_{bin}(b) \sum_{a,b,c} \int d\Delta p_T W_{AA}^c(\Delta p_T, p_T + \Delta p_T, R)$ $\times f_{a/A} \otimes f_{b/A} \otimes H_{ab}^c \otimes J_c(p_T + \Delta p_T, R|p_{T,c})$

J_c: jet function in vacuum, describe the probability to form a jet from parton c *Kang, Ringer, and Vitev, JHEP 10 (2016) 125 Kang, Ringer, and Vitev, PLB 769, 242 (2017)*

 W_{AA}^{c} : jet energy loss distribution averaged over initial production points, propagation directions

He, Pang, and Wang, PRL 122, 252302 (2019)

A Sketch of HIC, from lbl website

Jet quenching: energy loss + transverse momentum broadening

Yayun He

Jet nuclear modification factor

$$R_{AA} = \frac{d\sigma^{AA}}{\langle N_{coll} \rangle \, d\sigma^{pp}}$$

- ✓ Strong centrality dependence jet quenching
- ✓ Weak p_T and colliding energy dependence –
 competition btw the initial spectrum and jet quenching

ATLAS Collaboration, PRL 114, 072302 (2015) ATLAS Collaboration, PLB 790 , 108 (2019)

Jet nuclear modification factor

$$R_{AA} = \frac{d\sigma^{AA}}{\langle N_{coll} \rangle \, d\sigma^{pp}}$$

- ✓ Strong centrality dependence jet quenching
- ✓ Weak p_T and colliding energy dependence –
 competition btw the initial spectrum and jet quenching

ATLAS Collaboration, PRL 114, 072302 (2015) ATLAS Collaboration, PLB 790 , 108 (2019)

Jet nuclear modification factor

$$R_{AA} = \frac{d\sigma^{AA}}{\langle N_{coll} \rangle \, d\sigma^{pp}}$$

- ✓ Strong centrality dependence jet quenching
- ✓ Weak p_T and colliding energy dependence –
 competition btw the initial spectrum and jet quenching
- ✓ R dependence differential, capable to constrain jet quenching models

STAR Collaboration, PRC, 102, 054913 (2020)

Jet nuclear modification factor

$$R_{AA} = \frac{d\sigma^{AA}}{\langle N_{coll} \rangle \, d\sigma^{pp}}$$

- ✓ Strong centrality dependence jet quenching
- ✓ Weak p_T and colliding energy dependence –
 competition btw the initial spectrum and jet quenching
- *R* dependence differential, capable to constrain transport model

CMS Collaboration, JHEP 05 (2021) 284

Jet anisotropic flow

$$\frac{dN}{d\phi} = C[1 + 2\nu_n \cos(n(\phi - \Psi_n))]$$

$$\stackrel{\bullet}{\bullet} n = 1 \text{ direct flow}$$

$$\stackrel{\bullet}{\bullet} n = 2 \text{ elliptic flow}$$

$$\stackrel{\bullet}{\bullet} n = 3 \text{ triangle flow}$$

For elliptic flow

- Strong centrality dependence initial geometry and jet quenching
- ✓ Weak p_T and colliding energy dependence –
 competition btw the initial spectrum and jet quenching
- Potential to understand the path length dependence of jet quenching

Other jet observables:

- ✓ Jet shape, Jet fragmentation functions, Groomed jet mass and z_g
- ✓ Energy-energy correlators

✓ ...

Questions to answer:

How jets are quenched, and how the energy in jets is distributed after jet quenching
 How the QGP medium is modified due to energy deposition, and how the energy evolves

Jet Transport Model

Linear Boltzmann Transport (LBT) model Code available at: "https://github.com/lbt-jet"

 $p_a \cdot \partial f_a = \frac{\gamma_b}{2} \int \Sigma_{bcd} \prod_{i=b,c,d} \frac{d^3 p_i}{2E_i(2\pi)^3} (f_c f_d - f_a f_b) |M_{ab \to cd}| S_2(\hat{s}, \hat{t}, \hat{u}) (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) + \text{inelastic}$ $\mu_D^2 = \frac{3}{2}g^2T^2$ Braaten and Pisarski, PRL 64 (1990) 1338 $S_2(\hat{s}, \hat{t}, \hat{u}) = \theta(\hat{s} > 2\mu_D^2)\theta(-\hat{s} + \mu_D^2 \le \hat{t} \le -\mu_D^2),$ > Elastic: $\Gamma_a^{el} = \frac{p \cdot u}{p_0} \Sigma_{bcd} \rho_b(x) \sigma_{ab \to cd}$ LO pQCD J. Auvinen et al, PRC 82(2010) 024906 > Inelastic: $\frac{d\Gamma_a^{inel}}{dzdk_1^2} = \frac{6\alpha_s P_a(z)k_{\perp}^4}{\pi(k_1^2 + z^2m^2)^4} \cdot \frac{p \cdot u}{p_0} \hat{q}_a \sin^2(\frac{\tau - \tau_i}{2\tau_f})$ High twist Guo and Wang, PRL 85 (2000) 3591 radiated gluon Zhang, Wang and Wang, PRL 93 (2004) 072301 Multiple scattering leading parton Medium response: recoil – negative

Linear approximation

thermal

"negative"

recoil

Jet Transport Model

Coupled hydro + Linear Boltzmann Transport model (CoLBT)

Energy Loss

Path length dependence: $\hat{q}_a \approx C_2(a) \frac{42 \xi(3)}{\pi} \ln \frac{2.6 ET}{4\mu^2}$

- Elastic: linear dependence on path length
- Inelastic: quadratic at the early stage
- Energy transfers from the hard to the soft

He, Luo, Wang & Zhu, PRC 91, 054908 (2015)

Luo, He, Cao & Wang, PRC 109, 034919 (2024)

Bayesian Analysis of Energy loss

Jet energy loss distributions

He, Pang & Wang, PRL 122, 252302 (2019)

$$\frac{d\sigma_{AA}^{\text{jet}}}{dp_T dy}(p_T, R) \approx N_{\text{bin}}(b) \int d\Delta p_T \frac{d\sigma_{pp}^{\text{jet}}}{dp_T dy}(p_T + \Delta p_T, R) W_{AA}(\Delta p_T, p_T + \Delta p_T, R)$$
MC transport models:
$$\frac{\sigma_{pp}^{\text{jet}}(p_T)}{W_{AA}(p_T, \Delta p_T)} \Longrightarrow \sigma_{AA}^{\text{jet}}(p_T)$$
Bayesian analysis:
$$\frac{\sigma_{pp}^{\text{jet}}(p_T)}{\sigma_{AA}^{\text{jet}}(p_T)} \Longrightarrow W_{AA}(p_T, \Delta p_T)$$
Data-driven &
model-independent
Parametrization:
$$W_{AA}(x) = \frac{\alpha^{\alpha} x^{\alpha-1} e^{-\alpha x}}{\Gamma(\alpha)} \quad x = \frac{\Delta p_T}{\langle \Delta p_T \rangle}$$
Posterior distributions

Bayesian Analysis of Energy loss

single inclusive jet in Pb+Pb				
	(0-10%)2.76 TeV	(20-30%)2.76 TeV	(0-10%)5.02 TeV	
α	3.87 ± 2.93	4.47 ± 2.83	4.41 ± 2.86	
	(1.45 ± 0.01)	(1.33 ± 0.02)	(1.58 ± 0.02)	
β	1.40 ± 1.12	1.12 ± 0.47	1.06 ± 0.97	
	(1.39 ± 0.06)	(1.08 ± 0.07)	(1.56 ± 0.06)	
γ	0.21 ± 0.09	0.15 ± 0.07	0.26 ± 0.06	
	(0.21 ± 0.01)	(0.20 ± 0.01)	(0.23 ± 0.01)	

γ -triggered jet in Pb+Pb				
	(0-30%)2.76 TeV	(30-100%)2.76 TeV	(0-30%)5.02 TeV	
α	2.13 ± 1.28	3.75 ± 2.81	0.90 ± 0.09	
	(1.95 ± 0.12)	(1.04 ± 0.06)	(1.84 ± 0.13)	
β	2.68 ± 1.40	0.55 ± 0.44	1.50 ± 0.85	
	(0.72 ± 0.06)	(0.53 ± 0.04)	(0.50 ± 0.04)	
γ	0.16 ± 0.14	0.13 ± 0.18	0.21 ± 0.12	
	(0.44 ± 0.02)	(0.30 ± 0.02)	(0.56 ± 0.02)	

$$\hat{q} \approx \begin{cases} 1.2 \pm 0.3 \\ 1.9 \pm 0.7 \end{cases} \ \ \mathrm{GeV^2/fm} \ \ \mathrm{at} \quad \begin{array}{c} \mathrm{T}{=}370 \ \mathrm{MeV} & \ \ \ \mathbb{Q}\mathrm{RHIC} \\ \mathrm{T}{=}470 \ \mathrm{MeV} & \ \ \ \mathbb{Q}\mathrm{LHC} \end{cases}$$

Transverse Jet Tomography

Transverse jet tomography

He, Pang, and Wang, PRL 125 (2020) 122301

 $rac{k^{\mu}}{\omega}\partial_{\mu}f_{a}(ec{k},ec{r})=rac{{\hat{q}}_{\,a}}{4}ec{
abla}_{k_{\perp}}^{2}f_{a}(ec{k},ec{r})$

$$egin{aligned} \hat{q}_{a} &= \sum_{bcd} \prod_{i=b,c,d} \int rac{d^{3}k_{i}}{2E_{i}(2\pi)^{3}} f_{b}(k_{b}) (ec{k}_{a\perp} - ec{k}_{c\perp})^{2} imes |\mathcal{M}_{ab o cd}|^{2} rac{\gamma_{b}}{2} (2\pi)^{4} \delta^{4}(k_{a} + k_{b} - k_{c} - k_{d}) \ & ext{if} \ \ \hat{q}_{a} = ext{constant} \ \ \ f_{a}(ec{k}, ec{r}, t) = 3 igg(rac{4\omega}{\hat{q}_{a}t^{2}}igg)^{2} e^{-(ec{r}_{\perp} - rac{ec{k}_{\perp}}{2\omega}t)^{2} rac{12\omega^{2}}{\hat{q}_{a}t^{3}} - rac{k_{\perp}^{2}}{\hat{q}_{a}t}} \end{aligned}$$

diffusion
$$\sqrt{\langle k_{\perp}^2
angle} = \sqrt{{\hat q}_{\,a} t} \qquad \sqrt{\langle r_{\perp}^2
angle} = t \sqrt{({\hat q}_{\,a} t/3)}/\omega$$

drift
$$ec{r}_{\perp} = (ec{k}_{\perp}/2\omega)t$$

Transverse Jet Tomography

Transverse jet tomography

If
$$\hat{q} = \hat{q}_0 + \vec{a} \cdot \vec{r}_{\perp}$$
 $f(\vec{k}_{\perp}, t) = [1 - \frac{t}{3\hat{q}_0 w} \vec{a} \cdot \vec{k}_{\perp} (1 - \frac{1}{2\hat{q}_0 t} \vec{k}_{\perp}^2)] f_s(\vec{k}_{\perp}, t)$

when $|\vec{a}|$ is small enough, the correction $\propto |\vec{a}|$

Distorted Gaussian

Jets tend to propagate to the lower \hat{q} region

Transverse Jet Tomography

Simple model simulations

transverse number asymmetry:

$$A_N^y = rac{f(k_y>0) - f(k_y < 0)}{f(k_y>0) + f(k_y < 0)}$$

similar to the QGP

$$\hat{q}(\vec{r}_{\perp},t) = \frac{\hat{q}_0 t_0}{t_0 + t} e^{-x^2/a_x^2 - y^2/a_y^2}$$

Larger gradient, and longer propagation give stronger transverse asymmetry

Gamma-jet Transverse Tomography

LBT model simulations

transverse energy asymmetry: $A_{E_T}^{\mathcal{Y}} =$

$$=\frac{E_T(k_y > 0) - E_T(k_y < 0)}{E_T(k_y > 0) + E_T(k_y < 0)}$$

Jet tomography for jet localization

2D Dijet Tomography

Yayun He

Jet Tomography in High Energy Heavy-ion Collisions

2D Dijet Tomography

Longitudinal jet tomography:

 $r_{e,2} = (p_{T,2}^{\rm pp} - p_{T,2}^{\rm AA})/p_{T,2}^{\rm pp}$

Yayun He

Medium Response: recoil-negative

Yayun He

Medium Response: recoil-negative

Medium Response: diffusion wake

Medium Response: diffusion wake

Chen, Yang, He, Ke, Pang, and Wang, PRL 127, 082301 (2021)

Yang, Luo, Chen, Pang, and Wang, PRL 130(5), 052301 (2023)

- ✓ 2D jet tomography can enhance the signal of diffusion wake
- ✓ 3D jet structure can be quenched to form diffusion wake in the longitudinal direction

Machine Learning Assisted

Yang, He, Chen, Ke, Pang, and Wang, EPJC (2023) 83:652

✓ Point Cloud NN to predict initial jet creation points, and search for diffusion wake

Energy-Energy Correlator

Definition and motivation

$$\frac{d\Sigma^{n}}{d\theta} = \frac{1}{\sigma} \Sigma_{i\neq j} \int d\vec{n}_{i,j} \ \frac{d\sigma_{i,j}}{d\vec{n}_{i,j}} \frac{E_{i}^{n} E_{j}^{n}}{Q^{2n}} \delta(\vec{n}_{i} \cdot \vec{n}_{j} - \cos\theta)$$

- 1. IRC safe, pQCD calculable
- 2. Soft suppressed, easy to subtract background for experiments

Ian Moult et al, PRL, 130, 262301 (2023)

-2

-2

-1

Jet Tomography in High Energy Heavy-ion Collisions

W. Fan, QM 2023

0

EEC in medium

High-twist induced emission in a QGP brick:

$$\frac{d\Sigma_q^{med}}{d\theta} \approx \frac{L^2}{\pi\sqrt{E}} \frac{8\alpha_s C_A}{\left(\sqrt{EL} \ \theta\right)^3} \int dz \ \frac{P_{qg}(z)}{z(1-z)} \left[1 - \frac{\sin ELz(1-z)\theta^2/8}{ELz(1-z)\theta^2/8} \right]$$

$$\blacktriangleright \text{ Large angle scaling:}$$

$$\frac{d\Sigma_q^{med}}{d\theta} \approx \frac{L^2\hat{q}}{2E} \frac{\alpha_s C_A}{\theta}$$

$$\backsim \text{ Small angle scaling:}$$

$$\frac{d\Sigma_q^{med}}{d\theta} \approx \frac{L^3\hat{q}}{64\pi} \alpha_s C_A \theta$$

Gluon emission in a QGP brick:

Ian Moult et al, PRL, 130, 262301 (2023)

Yang, He, Moult & Wang, PRL 132, 011901 (2024)

Debye screen mass: $\mu_D^2 = \frac{3}{2} K g^2 T^2$, perturbative + nonperturbative

□Only vary *K* during the samplings of the transverse momentum transfer of $2 \rightarrow 2$ processes and kinematic limit

Single parton with multiple scatterings

- Strong dependence on K, especially at large angles
 Medium response dominant
- Radiated gluon suppressed

Debye screen mass: $\mu_D^2 = \frac{3}{2} K g^2 T^2$, perturbative + non-perturbative

□Only vary *K* during the samplings of the transverse momentum transfer of $2 \rightarrow 2$ processes and kinematic limit

Shower partons with multiple scatterings

 ✓ Small angle suppressed due to energy loss and momentum broadening
 ✓ Large angle enhanced due to medium response and radiated gluons

γ -jet in Pb+Pb 5.02 TeV 0-10 %

✓ Small angle suppressed due to energy loss and momentum broadening, insensitive to p_T cut
 ✓ Large angle enhanced due to medium response and radiated gluons, sensitive to p_T cut

Yayun He

Summary

- ✓ Jets are powerful probes to reveal QGP properties.
- ✓ Jet energy loss and the distributions can be extracted from experimental data with Bayesian analysis.
- Jet tomography can be used to localize initial jet production, and is promising to search for the diffusion wake.
- Energy-energy correlator is an excellent probe to investigate the short-distance structure of the QGP.

Thanks for your attention