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— Quantum Computing

* Computing with quantum bits (“qubits”)

* Hardware: How to build a quantum computer Simulting Physieswith Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

* Algorithm: How to “run” a quantum computer

1. INTRODUCTION

[ J [ J
o E t l l t ° t On the program it says this is a keynote speech—and I don’t know
XpOnen la acce era lOn ° quan um Supremacy whatakeyno;:e s%)eech is. I do not intend in any way to suggest what should
be in this meeting as a keynote of the subjects or anything like that. I have
my own things to say and to talk about and there’s no implication that
anybody needs to talk about the same thing or anything like it. So what I
want to talk about is what Mike Dertouzos suggested that nobody would
talk about. I want to talk about the problem of simulating physics with
computers and [ mean that in a specific way which I am going to explain.
The reason for doing this is something that I learned about from Ed
€ d ° f l ° ] ° f ) d Fredkin, and my entire interest in the subject has been inspired by him. It
has to do with learning something about the possibilities of computers, and
oeo a'n l yO u Wan t tO m a’ (e a' Sl m u at l O n O n atu re ) J yO u also something about §ossibilities in physics. Ip}we suppose that »Se know all
the physical laws perfectly, of course we don’t have to pay any attention to
b t t 1 o t t h o l 13 computers. It’s interesting anyway to entertain oneself with the idea that
we’ve got something to learn about physical laws; and if I take a relaxed
e er m a’ (e l quan um mec anlca’ ) ¢ view here (after all 'm here and not at home) I'll admit that we don’t
understand everything.
o e SR s e S 2 Ed 2

—kFeynman
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Basic Elements of Quantum Computing

* Operator: unitary

+ Single qubit: X(c,), Y(6,), Z(c,), Rx(O) ("), ...

e X =IQIQ - QX® -
* Two(Multi) qubits: CNOT(|501|)

0010,

* Measurements: Hermitian
e X,Y,Z

* The Hamiltonian should be expressed in XYZs!
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Quantum Computing in Physics

* Challenges
* Space complexity
* Limited number of qubits
* Classical simulations: exponentially difficult
* Time complexity
* Noises
* Gauge field
* Analog simulation

* Digital simulation
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1+-1D NJL Model

* Lagrangian:
L = G liy"d, — m)y, + gy,

* Discretization: staggered fermion
W (X) - l//a,l(x) a2n
) l//a,Z(x) a 2n+1

H = 2 [ T a n+1 h. C) + (_ l)nma¢;,n¢a,n]

 Hamiltonian:

-8 Z (B8 san+ B Panit = 200, Pant) o Pansi]

a,n=even
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Jordan-Wigner Transformation

a—1
— I I ~7 =T + — =z +
¢an_ ﬁﬂaanaan—:‘angan’
20)

p=1

Lo
Oqn = _(Gan — lga,n)

2
~< — <
Ga,n T Ga,i

<n

» Keeps the anti-commuting relation of ¢.
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~ Calculation of Correlation Functions

* Definition:

dz . _
Join = [47;6 M (h |z, — 2)y w(0kO) | )

Az i iHz - —iHz,,+
o whereyt = y" + ¢! r
* Relevant dimension: 1+1 D
* Prepare the hadronic state

* Calculate the (dynamical) correlation function
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Fragmentation Function

 Defnition: (collinear quark ff)

dy
4r

=) |hX)(hX|
X

D)(z) = Z‘H[ e~ PR {{Q | w(y ) Z W (0) | 2}

* One can not prepare all the | &, X) states!
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Preparation of states

 Find the unitary transformation U from computational basis to energy eigenbasis
U[0101---0101) = | Q)
U(|1001.--0101) + [0110---0101) + --- +]0101:--0110)) = | h;(p = 0))

* Equivalently,
U|1001---0101) = | A/ )
U|0110---0101) = | A7)
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Preparation of Multi-particle States

* Separate total space into M parts, each parts encoded by K qubits
M—1
n=][®
i=0
* Each part can have at most one particle
U ‘Iig> — ‘Ql>
U ‘qu> = | g;)
U ‘Iih> — ‘hl>
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Preparation of Multi-particle States

* Completeness condition:

Y I | =1d,

where Id is the identical matrix

* Therefore

X

JFL a Jj#i

M—-1
o~ Y U U
1=0

* But notice now U must be accurate for all single-particle states



Results

0.5k s 1 * Converges with N

. §  °1 e Qualitatively agrees with other results

g |+ Finite size effect at large z
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Noise in QC

» After each step, there is a probability p of error, the density matrix becomes
e(p) = —p)p + g((;xp(;x + 0’po” + o°po”)
* Noise error is accumulated along the quantum circuit

. If the number of gates N ~ —, noise may be dominant!
P

* Error mitigation:
* Postselection

* Noise extrapoation
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Postselection

e(p) = —p)p+ g(o'xpax + 0’ po’ + 6°po”)

* Physical states have fixed quantum numbers, such as particle number.
* If these quantities changed, it must be due to noise.
* So results with inaccurate quantum numbers are excluded.

 Effectively, only even number of x and y flips are allowed.
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Postselection
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Noise extrapolation

* Any final measurement can be viewed as a function of noise probability
O = 0(p)

* By measuring at different p and choosing a proper extrapolation method,
theoretically one can get O(0)

* Richardson zero noise extrapolation of A order:
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* Poststlection plus error extrapolation
can effectively eliminate errors.

Results
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Thermal States

* Gibbs state:

e—H/T

Tre—H/T

* Thermal states are mixed states, which are difficult for quantum computing

p:

* Time complexity: measure repeatedly on different states

* Space complexity: purification into a pure state with more qubits
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Thermal States

* Gibbs state:

e—H/T

Tre—H/'T

* Thermal states are mixed states, which are difficult for quantum computing

p:

* Time complexity: measure repeatedly on different states

compl@ purification into a pure state with more qubits

e
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Variational Algorithm

* Gibbs state is the state with minimal free energy.
* So we can use variational algorithm again!
* But how to parametrize the density matrix?

* Especially: how to measure the entropy?
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Variational Algorithm

 Parametrization:

p(,0) = U(cb)po(H)U*(cb)
po(0) = H ® pi(6)

pA0) = cos* HilO)(O |+ sin“ 6, | 1)(1],
 Purification:

cos @100%(00| + sin@| 11){(11| = cos*@|0)(0| + sin* | 1){1|
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Variational Algorithm

* The entropy of such a density matrix is analytical:

1

N-1
S(0) = — 2 [sin2 0. log(sin” 0.) + cOs? 0 log(cos” 6’i)]
i=0
* 2N qubits, N entangled pairs

* Measure on half of the qubits = partial trace the other half
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1-+1D Schwinger Model

 Confinement and deconfinement in such model

 Hamiltonian
2 N—=2

1 N=-2 N—1 |
— T 1
H=—- N (U1t +hocT+m Y (=1 ¢jf¢j+ Z 2
j=0

 Gauss’ law

Lj,j+1 _ Lj—l,j — €/77L¢j —

J

* Gauge field can be expressed by fermion field
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1-+1D Schwinger Model

* Gauge transformation

j—1
b~ | U9,
[=0

» Simplified Hamiltonian

{ N=2 N=d .
H= 2 2 [y +h.cl+m Z (=194,

2 N-2

2
_ (__1\/+1
gzaZ{G'l'z[qb%b_%]}

j=0
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String Tension

* ¢ can be interpreted as a pair of fermion-antifermion with charge eg at the two ends
of the system

* The “potential” between the fermion-anntifermion pairs:

1
7) = 5 (F.(B) = Fo(B) - 1.

_ g?a(N — 1)(€2 €

Je 2 2



Results
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 Variational quantum algorithm can effectively simulate thermal states

u
* Deconfinement behavior can ben seen at high temperature
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Summary and Outlook

* We propose quantum algorithms to calculate fragmentation functions and
simulate thermal states.

* We calculated FF with 1+1D NJL model and string tension with Schwinger model.
* Quantum algorithms give very promising results.

* More study on thermal states and phase transition ongoing.

28



