Probing Ultra-Dense Gluonic Matter via UPCs at CMS

Zaochen Ye (South China Normal University) 2024年6月16号

In collaboration with Wei Li, Jiazhao Lin and Shuai Yang

中国科学技术大学核物理系列小型研讨会 USTC-PNP-Nuclear Physics Mini Workshop Series

Understand Fundamental Structure of Matter

Smash them!!!

Smash them!!!

Smash them!!!

Smash them!!!

Understand Nucleon Structure

Understand Nucleon Structure

What is the fate of gluons at extreme densities toward the unitary limit?

Confinement & Gluon Saturation

Mass Origin

Ultra-Peripheral Collision (UPC)

- Lorentz contracted EM fields \rightarrow flux of quasi-real photons (Q²< \hbar^2/R^2).
- The photon flux $\propto Z^2$.
- Photon kinematics: $p_T < \hbar/R_A \sim 30$ MeV ($E_{max} \sim 80$ GeV) at LHC.

Heavy ion collider is also a Photon-Photon and Photon-Ion collider !!!

VM (e.g., J/ Ψ) photoproduction directly probes gluonic structure of nucleus and nucleon.

VM (e.g., J/Ψ) photoproduction directly probes gluonic structure of nucleus and nucleon.

VM (e.g., J/Ψ) photoproduction directly probes gluonic structure of nucleus and nucleon.

VM (e.g., J/Ψ) photoproduction directly probes gluonic structure of nucleus and nucleon.

Exclusive J/ Ψ Photoproduction via γ + p (Free Nucleon)

$\gamma + \mathbf{p} \to \mathbf{J}/\psi + \mathbf{p}$

 Data from LHC and HERA follow a common power-law trend, consistent with the expectation from the rapidly increasing gluon density in a proton

No clear indication of gluon saturation, even down to $x^{10^{-5}}$ in a free nucleon.

Advantages of Gluon Saturation Search in Nucleus

Gluons is **enhanced** by a factor of $A^{1/3}$ in **nucleus** compared to what in free nucleon

$$Q_{\rm s}^2 \sim A^{1/3} \left(\frac{1}{x}\right)^{\lambda}$$

• Gluon saturation is expected to be **easier** to be reached **in nuclei**

 Strong suppression, but the rapidity distribution is still a puzzle for theoretical studies (models considering gluon saturation or shadowing)

Zaochen Ye (SCNU) at USTC

 $x = M_{VM} e^{\mp y}$

low-energy photons dominant

18

Two-Way Ambiguity in A-A UPC

At least two equations for the solutions

Two-Way Ambiguity in A-A UPC

Method to Solve Two-Way Ambiguity in A-A UPC

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

• Control/select the impact parameter of UPCs via forward emitted neutrons

Neutron emission via EMD with <u>additional photon exchange</u>:

- Soft photons (energy ~10s MeV)
- Independent of interested physics process
- Large cross section ~200 b (single EMD)
- Smaller b \rightarrow More neutrons

• Analogous to centrality:

• $\mathbf{b}_{XnXn} < \mathbf{b}_{0nXn} < \mathbf{b}_{0n0n}$ in UPC

Method to Solve Two-Way Ambiguity in A-A UPC

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

•

Control/select the impact parameter of UPCs via forward emitted neutrons ullet

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-12 21:48:04.525285 GMT Run / Event / LS: 326619 / 2320827 / 8

Muon

Chambers

Interested UPC event:

- □ Low activities in forward calorimeters.
- Exactly two tracks identified as muons.

Signal Extraction

CMS: PRL 131, 262301 (2023)

AnAn: All possible neutron emissions

Signal yields are extracted by fitting the mass and transverse momentum spectra.

Coherent J/ Ψ in AnAn

CMS: PRL 131, 262301 (2023)

AnAn: All possible neutron emissions

CMS data cover a new *y* region and follow ALICE forward data trend

- A **tension** btw **ALICE/CMS** and **LHCb** data?
- No theory can describe data over full y region
 - A puzzle?

Coherent J/ Ψ in AnAn

CMS: PRL 131, 262301 (2023)

AnAn: All possible neutron emissions

CMS data cover a new *y* region and follow ALICE forward data trend

- A **tension** btw **ALICE/CMS** and **LHCb** data?
- No theory can describe data over full y region
 A puzzle?

A deeper look at J/Ψ production from single γ +Pb without the "two-way ambiguity" will tell more.

$$\frac{d\sigma_{AA\to AA'J/\psi}}{dy} = N_{\gamma/A}(\omega_1) \cdot \sigma_{\gamma A\to J/\psi A'}(\omega_1) + N_{\gamma/A}(\omega_2) \cdot \sigma_{\gamma A\to J/\psi A'}(\omega_2)$$

Neutron Tag with Zero Degree Calorimeter

Coherent J/ Ψ in PbPb UPCs with Fwd Neutron Tag CMS: PRL 131, 262301 (2023)

- Coherent J/Ψ measurement from different neutron classes
- No model can describe the data in different neutron classes

Allow to disentangle the low- and high- energy photon-nucleus contributions of a single γ+Pb.

Neutron migration effects are corrected

Coherent J/ Ψ Cross Section of Single γ +Pb vs. W

ALICE, LHCb vs. IA:

- Data is close to IA at low W.
- Data is significant lower than IA at W~125 GeV.

Coherent J/ Ψ Cross Section of Single γ +Pb vs. W CMS: PRL 131, 262301 (2023)

ALICE, LHCb vs. IA:

- Data is close to IA at low W.
- Data is significant lower than IA at W~125 GeV.

New data from **CMS**:

• **Rapid increase** at W<40 GeV.

Coherent J/ Ψ Cross Section of Single γ +Pb vs. W CMS: PRL 131, 262301 (2023)

ALICE, LHCb vs. IA:

- Data is close to IA at low W.
- Data is significant lower than IA at W~125 GeV.

New data from **CMS**:

- **Rapid increase** at W<40 GeV.
- Turn into a **nearly flat** (slower rising) trend for W>40 GeV.

Coherent J/ Ψ Cross Section of Single γ +Pb vs. W CMS: PRL 131, 262301 (2023)

ALICE, LHCb vs. IA:

- Data is close to IA at low W.
- Data is significant lower than IA at W~125 GeV.

New data from **CMS**:

- **Rapid increase** at W<40 GeV.
- Turn into a **nearly flat** (slower rising) trend for W>40 GeV.

No models can describe the entire data distribution.

ALICE new data follows the same trend, see Simone Ragoni' <u>QM23 talk</u> arXiv:2305.19060

Nuclear Gluon Suppression Factor

CMS: PRL 131, 262301 (2023)

$$R_g^A = \left(\frac{\sigma_{\gamma A \to J/\psi A}^{exp}}{\sigma_{\gamma A \to J/\psi A}^{IA}}\right)^{1/2}$$

Impulse approx. (IA) neglects all nuclear effects.

• R_g represents nuclear gluon suppression factor at LO.

Nuclear Gluon Suppression Factor

CMS: PRL 131, 262301 (2023)

$$R_g^A = \left(\frac{\sigma_{\gamma A \to J/\psi A}^{exp}}{\sigma_{\gamma A \to J/\psi A}^{IA}}\right)^{1/2}$$

Impulse approx. (IA) neglects all nuclear effects.

- R_g represents nuclear gluon suppression factor at LO.
- At high-x region: flat trend.

Nuclear Gluon Suppression Factor

CMS: PRL 131, 262301 (2023)

$$R_g^A = \left(\frac{\sigma_{\gamma A \to J/\psi A}^{exp}}{\sigma_{\gamma A \to J/\psi A}^{IA}}\right)^{1/2}$$

Impulse approx. (IA) neglects all nuclear effects.

- R_g represents nuclear gluon suppression factor at LO.
- At high-x region: **flat** trend.
- Quickly **decrease** towards lower x region.

Beyond model expectation

35

What Physics Behind?

CMS: PRL 131, 262301 (2023)

- σ stops rapid rising trend \rightarrow splitting and recombination of gluons become equal
 - **Clear evidence for gluon saturation!!?**

What Physics Behind?

CMS: PRL 131, 262301 (2023)

- σ stops rapid rising trend \rightarrow splitting and recombination of gluons become equal
 - **Clear evidence for gluon saturation!!?**

OR

- Nucleus target becomes totally absorptive to incoming photons \rightarrow **Black Disk Limit!!?**
 - Nucleus becomes a black disk, internal structure is invisible.

Future Opportunities

PbPb $L_{int} = 13 \text{ nb}^{-1}$							A Ph		
	σ	All	Central 1	Central 2	Forward 1	Forward 2		Ar/O)
Meson		Total	Total	Total	Total 1	Total	▶	\} >	
$\rho \to \pi^+\pi^-$	5.2b	68 B	5.5 B	21B	4.9 B	13 B		VS VS	
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	9.5 B	210 M	2.5 B	190 M	1.2 B		vs. ∨s.	
$\phi \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}$	0.22b	2.9 B	82 M	490 M	15 M	330 M	4		
${ m J}/\psi o \mu^+\mu^-$	1.0 mb	14 M	1.1 M	5.7 M	600 K	1.6 M		~	
$\psi(2S) \to \mu^+ \mu^-$	30µb	400 K	35 K	180 K	19 K	47 K		Svstem size s	scan
$ m Y(1S) ightarrow \mu^+ \mu^-$	2.0 μb	26 K	2.8 K	14 K	880	2.0 K			T

CERN Yellow Report, arXiv:1812.06772

Summary

- First time, disentangled the low and high γ energy contributions to coherent J/ Ψ
- CMS measured coh. J/ Ψ at a **new low-x gluon regime** (10⁻⁴-10⁻⁵) in nucleus
- $\sigma(J/\Psi)$ vs. W not predicted by state of the art models
 - Gluon saturation? or black disk limit? or other physic effects?
- HL-LHC including CMS Phase-2 upgrades will bring new exciting opportunities

Thank you for your attention!

Special thanks to:

Nuclear shadowing: Vadim Guzey, Mark Strikman, Michael Zhalov CGC IpSat: Heikki Mantysaari, Bjorn Schenke Hot spot: Jesus Guillermo Contreras Nuno b-BK-Glauber-Gribov: Dagmar Bendova CD+CGC: Agnieszka Luszczak, Wolfgang Schafer For their valuable discussions and theoretical inputs.

Backup Slides

Pt Distribution in OnOn and XnXn

CMS and ALICE data follows the same trend

Compact Muon Solenoid Detector

Muon Reconstruction

• Tracker and muon detectors used to reconstruct/identify muons.

Understand Nucleon Structure at HERA

Future Opportunities

Photon Flux: Point-like vs. Realistic

CPC 277 (2022) 108388

Figure 4: (Color online) Photon fluxes coming from a nucleus $N_{\gamma A}$ in the point-like source approximation and the realistic description as functions of impact parameter b_{γ} calculated at different photon energies: 100 MeV (a), 100 GeV (b).

Coh. Jpsi from LHC Run1 PbPb UPC

PLB 772 (2017) 489

- Run 1 data from CMS and ALICE seem to be well consistent with LTA shadowing model calculations
- However,
 - large uncertainties
 - wide-y bins
 - Mixed low- and high- W contributions

QED Dimuon with Neutron Tagging at CMS

First direct evidence of b-dependent initial photon p_T , set strong base line for observe QGP EM effects in heavy ion collisions