

Parton fragmentation functions

华南师范大学 量子物质研究院

2024.6.16

A fundamental property of QCD - color confinement

QCD as the fundamental theory of strong interaction

Proton-proton collision

High energy scattering event

Hadronization is everywhere

Proton-proton collision

Intermediate state partonic scatterings and showers

Initial state hadron structure

Final state hadronization

- String fragmentation in PYTHIA
- Cluster hadronization in HERWIG and SHERPA
- Coalescence in AMPT

- Fragmentation Functions (FFs) are defined within the framework of QCD factorization!
- Hadronization \neq FFs

Multiple channels to explore parton hadronization

Indispensable joint efforts from experiments and QCD theory

Lepton-lepton colliders

BEPC, SuperKEKB

- No hadron in the initial-state
- Hadrons are emerged from energy
- Not ideal for studying hadron structure, but ideal for FFs
- Hadrons in the initial-state Hadrons are emerged from
- energy
- Currently used for studying hadron structure and FFs

Hadron-hadron colliders

lepton-hadron colliders

RHIC, LHC

HERA, JLab

- Hadrons in the initial-state
- Hadrons are emerged from energy
- Ideal for studying hadron structure, can also involve FFs

A clean access to fragmentation functions

QCD factorization in electron-positron annihilation

- Leading power/twist collinear factorization
- Large momentum transfer $Q \gg \Lambda_{OCD}$
- High precision control of $\hat{\sigma}$
- detected color singlet hadronic bound state.

 $\sigma^{e^+e^- \to hX} = \hat{\sigma}_{e^+e^- \to i} \otimes D_{i \to h}$

• D: fragmentation function, also called parton decay function, encodes the information on how patrons produced in hard scattering hadronize into the

Fragmentation Functions

Leading twist unpolarized fragmentation functions

Operator definition

$$D_{1}^{h/q}(z) = \frac{z}{4} \sum_{X} \int \frac{d\xi^{+}}{2\pi} e^{ik^{-}\xi^{+}} \operatorname{Tr} \left[\langle 0 | W(\infty^{+}, \xi^{+}) \psi_{q}(\xi^{+}, 0^{-}, \vec{0}_{T}) | P_{h}, S_{h}; X \rangle \right]$$
$$\times \langle P_{h}, S_{h}; X | \bar{\psi}_{q}(0^{+}, 0^{-}, \vec{0}_{T}) W(0^{+}, \infty^{+}) | 0 \rangle \gamma^{-} \right].$$

- Probability densities for finding color-neutral particles inside partons
- Momentum sum rule

$$\sum_{h} \sum_{S_{h}} \int_{0}^{1} dz \, z \, D_{1}^{h/q}(z) = 1$$

Time-like DGLAP QCD evolution

$$\frac{d}{d\ln\mu^2}D_1^{h/i}(z,\,\mu^2) = \frac{\alpha_s(\mu^2)}{2\pi}\sum_j \int_z^1 \frac{du}{u} P_{ji}(u,\,\alpha_s(\mu^2)) D_1^{h/j}\Big(\frac{z}{u},\,\mu^2\Big)$$

Perturbative splitting function: $P_{ji}(u, \alpha_s(\mu$

$$(0^+,\infty^+)|0\rangle\gamma^-\Big].$$

$$(u^2)) = P_{ji}^{(0)}(u) + \frac{\alpha_s(\mu^2)}{2\pi} P_{ji}^{(1)}(u) + \left(\frac{\alpha_s(\mu^2)}{2\pi}\right)^2 P_{ji}^{(2)}(u) + \cdots$$

Fragmentation Functions

Factorization in semi-inclusive deep inelastic scattering

$$\sigma^{lp \to l'hX} = f_{i/p} \otimes \hat{\sigma}_{li \to j} \otimes D_{j \to h}$$

Factorization in single inclusive hadron production in proton-proton collisions

$$\sigma^{pp \to hX} = f_{i/p}$$

 $\bigotimes f_{j/p} \bigotimes \hat{\sigma}_{ij \to k} \bigotimes D_{k \to h}$

8

Methodology for global extraction of FFs

Fitting Framework

FF global fitting panorama

Joint efforts from experiments and theory in extracting FFs

	DHESS	HKNS	JAM	NNFF1.0/1.1h
SIA 💋 SIDIS 💋 PP				
statistical treatment	Iterative Hessian 68% - 90%	Hessian $\Delta\chi^2 = 15.94$	Monte Carlo	Monte Carlo
parametrisation	standard	standard	standard	neural network
HF scheme	ZM-VFN	ZM-VFN	ZM-VFN	ZM-VFN
hadron species	π^\pm , K^\pm , $p/ar{p}$, h^\pm	π^\pm , K^\pm , $p/ar{p}$	π^\pm , K^\pm	π^\pm , K^\pm , $p/ar{p}$, h^\pm
latest update	PRD 91 (2015) 014035 PRD 95 (2017) 094019	PTEP 2016 (2016) 113B04	PRD 94 (2016) 114004	Eur.Phys.J.C 77 (2017 Eur.Phys.J.C 78 (2018
perturbative ord	er LO/NLO	LO/NLO	LO/NLO	LO/NLO/NNLO

Table courtesy of E.R.Nocera

FF global fitting panorama

Joint efforts from experiments and theory in extracting FFs

2	MAPFF	BSFSV	ARS	AKRS
SIA SIDIS PP	 ✓ ✓ (Approximate NLL+NLP) ★ 	 ✓ ✓ (Approximate NLL+NLP) ★ 	√ * *	✓ * *
Statistical treatment	Monte Carlo	NO	NO	NO
Parametrization	Neural network	Standard	Standard	Standard
HF Scheme	ZM-VFNS	ZM-VFNS	ZM-VFNS	ZM-VFNS
Hadron spices	π^{\pm}, K^{\pm}	π^{\pm}	π^{\pm}	π^{\pm}
Latest update	PRD 104 (2021) 3, 03 4007 PLB 834 (2022) 1374 56	PRL 129 (2022) 1, 01 2002	PRD 92 (2015) 11, 11 4017	PRD 95 (2017) 5, 054 003
perturbative order	LO/NLO/NNLO	NLO/NNLO	LO/NLO/NNLO	LO/NLO/NNLO

The best known FFs - π

V.Bertone et al. [NNPDF collaboration] Eur.Phys.J.C 77 (2017) 8, 516 D. de Florian et al. , Phys. Rev. D 91 (2015), 4035, D 95 (2017), 094019 N. Sato et al. [JAM Collaboration] Physical Review D, 94 (2016) 11, 114004

FFs panorama

Fragmentation Functions

NNPDF, EPJC 2018 DSS, PRD 2007

30 It is proved that FFs are universal, why they look different? 25 Different selections of experimental 20 data (kinematic cut) 15 Different parametrization for FFs at initial scale, NNFF unbiased? DSS 10 biased? 5 Everything else is the same 0 More measurements are needed to 1.04 further constrain the FFs, SIA will play very important role! 0.96

New opportunities in probing FFs

Jet fragmentation function

 $F(z_h, p_T) = \frac{d\sigma^{J(h)}}{dp_T d\eta dz_h} / \frac{d\sigma}{dp_T d\eta}$

Chien, Kang, Ringer, Vitev, HX, JHEP (2016)

 $\sigma^{pp \to J(h)X} = f_{i/p} \otimes f_{j/p} \otimes \hat{\sigma}_{ij \to k} \otimes \mathscr{G}_{k \to J(h)}$ $\mathcal{G}_{i \to J(h)} = \mathcal{J}_{ij} \otimes D_{j \to h}$

Light hadrons work very well

 $d\sigma$ $dp_T d\eta$

- Failed to describe D meson production in jet using KKK08 FFs

Heavy flavor in jet

Leads to new constrain of heavy flavor FFs using measurement of D in jet

Jet fragmentation function for J/ψ

$$\frac{d\sigma^{J/\psi}}{dp_T d\eta dz_h} = \sum_{a,b,c} f_a \otimes f_b \otimes H_{ab}^c \otimes \mathcal{G}_c^{J/\psi} \qquad \mathcal{G}_i^{J/\psi}(z,z_h,p_{\text{jet}}^+H_{ab})$$

- $\lambda_F = \begin{cases} \lambda_F, \\ \mu_F, \\ \mu_F,$

Heavy flavor in jet

 $\sum_{i} R, \mu = \sum_{i} \int_{z_h}^{1} \frac{dz'_h}{z'_h} \mathcal{J}_{ij}(z, z_h/z'_h, p_{\text{jet}}^+ R, \mu)$ $\times D_j^{J/\psi}(z'_h,\mu) + \mathcal{O}(m_{J/\psi}^2/(p_{\text{jet}}^+R)^2)$

New efforts from NPC

Joint analysis from NPC (SJTU+SCNU+IMP) Gao, Liu, Shen, HX, Zhao, PRL, 2024

- Higher precision determination of FFs for charged hadron
- Hint for violation of momentum sum rule?

Parton to hadron fragmentation in jet

A comprehensive analysis for jet fragmentation functions

Collinear fragmenting jet function in semi-inclusive jet production lacksquare

$$\Delta_{(T)}\mathcal{G}_i^h(z,z_h,\omega_J,\mu) = \sum_j \int_{z_h}^1 \frac{\mathrm{d}z'_h}{z'_h} \Delta_{(T)}\mathcal{J}_{ij}(z,z'_h,\omega_J,\mu) \Delta_{(T)}D_j^h\left(\frac{z_h}{z'_h},\mu\right)$$

- An alternative way to explore different types of FFs
- Similar FJFs can be defined in exclusive jet production

Kang, HX, Zhao, Zhou, JHEP, 2024

Parton to hadron fragmentation in jet

single inclusive jet production in hadronic collisions Kang, HX, Zhao, Zhou, 2024

$$\frac{\mathrm{d}\sigma^{p(S_{A})+p\to \mathrm{jeth}(S_{h})}X}{\mathrm{d}\eta\,\mathrm{d}^{2}\boldsymbol{p}_{T}\,\mathrm{d}z_{h}\,\mathrm{d}^{2}\boldsymbol{j}_{\perp}} = F_{UU,U} + |\boldsymbol{S}_{T}|\sin(\phi_{S_{T}}-\phi_{h})F_{TU,U}^{\sin(\phi_{S_{T}}-\phi_{h})} \\
+ \Lambda_{h} \Big[\lambda F_{LU,L} + |\boldsymbol{S}_{T}|\cos(\phi_{S_{T}}-\phi_{h})F_{TU,L}^{\cos(\phi_{S_{T}}-\phi_{h})}\Big] \\
+ |\boldsymbol{S}_{h_{T}}| \Big[\sin(\phi_{h}-\phi_{S_{h}})F_{UU,T}^{\sin(\phi_{h}-\phi_{S_{h}})} + \lambda\cos(\phi_{h}-\phi_{S_{h}})F_{LU,T}^{\cos(\phi_{h}-\phi_{S_{h}})} \\
+ |\boldsymbol{S}_{T}| \Big(\cos(\phi_{S_{T}}-\phi_{S_{h}})F_{TU,T}^{\cos(\phi_{S_{T}}-\phi_{S_{h}})} \\
+ \cos(2\phi_{h}-\phi_{S_{T}}-\phi_{S_{h}})F_{TU,T}^{\cos(2\phi_{h}-\phi_{S_{T}}-\phi_{S_{h}})}\Big], \quad (4.1)$$

• Unpolarized case as an example

$$\begin{split} F_{UU,U}(z_{h},j_{\perp}) &= \frac{\alpha_{s}^{2}}{s} \sum_{a,b,c} \int_{x_{1}^{\min}}^{1} \frac{\mathrm{d}x_{1}}{x_{1}} f_{1}^{a/A}(x_{1},\mu) \int_{x_{2}^{\min}}^{1} \frac{\mathrm{d}x_{2}}{x_{2}} f_{2}^{b/B}(x_{2},\mu) \\ &\times \int_{z^{\min}}^{1} \frac{\mathrm{d}z}{z^{2}} \hat{H}_{ab}^{c}(\hat{s},\hat{p}_{T},\hat{\eta},\mu) \mathcal{D}_{1}^{h/c}(z,z_{h},j_{\perp}^{2},Q) \\ &\equiv \mathcal{C}[ff\mathcal{D}_{1}\hat{H}], \\ \mathcal{D}_{1}^{h/c}(z,z_{h},\omega_{J}R,\boldsymbol{j}_{\perp},\mu) &= \hat{\mathcal{C}}_{c \to i}^{U}(z,\omega_{J}R,\mu) \int \frac{\mathrm{d}^{2}\boldsymbol{b}}{(2\pi)^{2}} e^{i\boldsymbol{j}_{\perp}\cdot\boldsymbol{b}/z_{h}} \widetilde{D}_{1}^{h/i}(z_{h},\boldsymbol{b},\mu_{J},\nu) \widetilde{S}_{i}(\boldsymbol{b},\mu_{J},\nu R) \end{split}$$

$$\left[T_{TU,T}^{\cos\left(2\phi_h - \phi_{S_T} - \phi_{S_h}\right)} \right], \quad (4.11)$$

$$\begin{split} F_{TU,U}^{\sin(\phi_{S}-\phi_{h})}(z_{h},j_{\perp}) &= \mathcal{C}\bigg[\frac{j_{\perp}}{z_{h}M_{h}}h_{1}f_{1}\mathcal{H}_{1}^{\perp}\Delta_{T}\hat{H}\bigg]\\ F_{LU,L}(z_{h},j_{\perp}) &= \mathcal{C}\bigg[g_{1L}f_{1}\mathcal{G}_{1L}\Delta_{L}\hat{H}\bigg],\\ F_{TU,L}^{\cos(\phi_{S}-\phi_{h})}(z_{h},j_{\perp}) &= -\mathcal{C}\bigg[\frac{j_{\perp}}{z_{h}M_{h}}h_{1}f_{1}\mathcal{H}_{1L}^{\perp}\Delta_{T}\hat{H}\bigg],\\ F_{UU,T}^{\sin(\phi_{h}-\phi_{S_{h}})}(z_{h},j_{\perp}) &= -\mathcal{C}\bigg[\frac{j_{\perp}}{z_{h}M_{h}}f_{1}f_{1}\mathcal{D}_{1T}^{\perp}\hat{H}\bigg],\\ F_{LU,T}^{\cos(\phi_{h}-\phi_{S_{h}})}(z_{h},j_{\perp}) &= -\mathcal{C}\bigg[\frac{j_{\perp}}{z_{h}M_{h}}g_{1L}f_{1}\mathcal{G}_{1T}\Delta_{L}\hat{H},\\ F_{TU,T}^{\cos(\phi_{S}-\phi_{S_{h}})}(z_{h},j_{\perp}) &= -\mathcal{C}\bigg[\frac{j_{\perp}^{2}}{z_{h}M_{h}}g_{1L}f_{1}\mathcal{H}_{1}\hat{H}\bigg],\\ F_{TU,T}^{\cos(2\phi_{h}-\phi_{S}-\phi_{S_{h}})}(z_{h},j_{\perp}) &= -\mathcal{C}\bigg[\frac{j_{\perp}^{2}}{2z_{h}^{2}M_{h}^{2}}h_{1}f_{1}\mathcal{H}_{1T}\hat{H}_{1T}\Delta_{T}\hat{H}\bigg], \end{split}$$

Opportunities to probe various FFs at BES/STCF

Probe collinear FFs

$$\frac{d\sigma^{O}(e^{+}e^{-} \rightarrow h_{1}h_{2}X)}{d\Omega dz_{1}dz_{2}} = \frac{3\alpha^{2}}{Q^{2}} \sum_{a,\bar{a}} e_{a}^{2} \left\{ A(y) \left(D_{1}\overline{D}_{1} - \lambda_{1}\lambda_{2}G_{1}\overline{G}_{1} + B(y) | \boldsymbol{S}_{1T} | | \boldsymbol{S}_{2T} | \cos(\phi_{S_{1}} + \phi_{S_{2}}) \left(H_{1} - H_{1} - H_{1} + H_{1} + H_{2} + H_{2}$$

$$\frac{d\sigma^L(e^+e^- \to h_1h_2X)}{d\Omega dz_1 dz_2} = \frac{3\alpha^2}{Q^2} \lambda_e \sum_{a,\bar{a}} e_a{}^2 \left\{ \frac{C(y)}{2} \left(\lambda_2 D_1 \overline{G}_1 - \lambda_1 G_1 \overline{G}_1 - \lambda_1 G_1 \overline{G}_1 - \lambda_2 G_1 \overline{G}_2 \right) \right\}$$

Back to back unpolarized hadron production in unpolarized SIA - TMDFFs

$$\frac{d\sigma^{O}(e^{+}e^{-} \rightarrow h_{1}h_{2}X)}{d\Omega dz_{1} dz_{2} d^{2}\boldsymbol{q}_{T}} = \frac{3\alpha^{2}}{Q^{2}} z_{1}^{2} z_{2}^{2} \left\{ A(y) \mathcal{F}\left[D_{1}\overline{D}_{1}\right] + B(y) \cos(2\phi_{1}) \mathcal{F}\left[\left(2\,\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_{T}\,\,\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_{T}\,-\,\boldsymbol{k}_{T}\cdot\boldsymbol{p}_{T}\,\right)\frac{H_{1}^{\perp}\overline{H}_{1}^{\perp}}{M_{1}M_{2}}\right] \right\}$$

One hadron polarized and another one unpolarized

$$\begin{aligned} \frac{d\sigma^{O}(e^{+}e^{-} \rightarrow h_{1}h_{2}X)}{d\Omega dz_{1} dz_{2} d^{2}\boldsymbol{q}_{T}} &= \frac{3\alpha^{2}}{Q^{2}} z_{1}^{2} z_{2}^{2} \left\{ \dots + B(y) \lambda_{1} \sin(2\phi_{1}) \mathcal{F}\left[\left(2 \,\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \,\,\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T} - \boldsymbol{k}_{T} \cdot \boldsymbol{p}_{T} \right) \frac{H_{1L}^{\perp} \overline{H}_{1}^{\perp}}{M_{1} M_{2}} \right] \\ &- A(y) \left| \boldsymbol{S}_{1T} \right| \, \sin(\phi_{1} - \phi_{S_{1}}) \,\mathcal{F}\left[\,\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \,\, \frac{D_{1T}^{\perp} \overline{D}_{1}}{M_{1}} \right] + B(y) \left| \boldsymbol{S}_{1T} \right| \, \sin(\phi_{1} + \phi_{S_{1}}) \,\mathcal{F}\left[\,\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T} \,\, \frac{H_{1} \overline{H}_{1}^{\perp}}{M_{2}} \right] \\ &+ B(y) \left| \boldsymbol{S}_{1T} \right| \, \sin(3\phi_{1} - \phi_{S_{1}}) \,\mathcal{F}\left[\left(4 \,\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T} \,\, (\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T})^{2} - 2 \,\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \,\, \boldsymbol{k}_{T} \cdot \boldsymbol{p}_{T} \,\, - \,\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T} \,\, \boldsymbol{k}_{T}^{2} \right) \frac{H_{1T}^{\perp} \overline{H}_{1}^{\perp}}{2M_{1}^{2} M_{2}} \right] \right\}, \end{aligned}$$

A complete analysis can be found in hep/ph9702281

FFs as a tool to probe nucleon structure

Probe the nucleon structure

$$\sigma^{lp \to l'hX} = f_{i/p} \otimes \hat{\sigma}_{li \to j} \otimes$$

JAM, PRD 2021

FFs as a tool to probe nuclear PDFs

Inclusive hadron production in p+Pb collisions

Precise information of FF is helpful for nuclear PDF determination

Duwentaster et al, PRD 2021

Transverse momentum dependent FFs

FFs: 8 transverse momentum dependent FFs at leading twist

	Leading Quark TMDFFs Hadron Spin Quark Spir					
				Quark Polarization		
			Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)	
	Unpolarized	Hadrons	$D_1 = \mathbf{\bullet}$ Unpolarized		$H_1^{\perp} = \bigcirc - \bigcirc \bullet$ Collins	
	adrons	L		$G_1 = \underbrace{\bullet \bullet}_{Helicity} - \underbrace{\bullet \bullet}_{Helicity}$	$H_{1L}^{\perp} = \checkmark - \checkmark$	
	Polarized Ha	Т	$D_{1T}^{\perp} = \underbrace{\bullet}^{\uparrow} - \underbrace{\bullet}_{\bullet}$ Polarizing FF	$G_{1T}^{\perp} = \underbrace{\stackrel{\uparrow}{\longleftarrow} - \underbrace{\stackrel{\uparrow}{\longleftarrow}}$	$H_{1} = \begin{array}{c} \uparrow \\ I \\ I \\ Transversity \end{array} - \begin{array}{c} \uparrow \\ I \\ I \\ I \\ I \\ T \end{array}$	

How to probe transverse momentum dependent FFs

- Probing nucleon 3D s
- Hard scale $Q_1 \gg 1/f_1$ quarks/gluons)
- gluons

Same requirement on two scales also apply to I MDFFs

Nuclear modified transverse momentum dependent FFs

TMD factorization for SIDIS

 $\frac{d\sigma^A}{dx\,dQ^2\,dz\,d^2P_{h\perp}} = \sigma_0\,H(Q)\,\sum_a e_q^2\,\int_0^\infty \frac{b\,db}{2\pi}J_0\left(\frac{bP_{h\perp}}{z}\right)f_{q/n}^A(x,b;Q)\,D_{h/q}^A(z,b;Q)$

 $f^A_{q/n}(x,b;Q) = \left[C_{q\leftarrow i}\otimes f^A_{i/n}
ight](x,\mu_{b_*})\exp\left\{-S_{ ext{pert}}(\mu_{b_*},Q)-S^f_{ ext{NP}}(b,Q,A)
ight\}$ $D^A_{h/q}(z,b;Q) = rac{1}{7^2} \left[\hat{C}_{i\leftarrow q} \otimes D^A_{h/i}
ight](z,\mu_{b_*}) \exp\left\{ -S_{ ext{pert}}(\mu_{b_*},Q) - S^D_{ ext{NP}}(b,z,Q,A)
ight\}$ **Our** assumptions

- Perturbative information is left unchanged by the nuclear medium. $C_{a\leftarrow i}, C_{i\leftarrow q}, \text{ and } S_{\text{pert}} \text{ are unchanged.}$
- Non-perturbative information is modified. $f_{i/n}^A$, $D_{h/i}^A$, S_{NP}^D , and S_{NP}^f are altered. $S_{\rm NP}^D(z,b,Q,A) = S_{\rm NP}^D(z,b,Q) + b_N \left(A^{1/3}\right)$ $S_{\rm NP}^{D}(z,b,Q,A) = S_{\rm NP}^{D}(z,b,Q) + b_{N} \left(A^{1/3}\right)$

Alrashed, Anderle, Kang, Terry, HX, PRL 2022

$$\left(-1 \right) \frac{b^2}{z^2}$$

 $\left(-1 \right) \frac{b^2}{z^2}$

Nuclear modified transverse momentum dependent FFs

Data selections

Drell-Yan Measurements

• $R_{AB} = \frac{d\sigma_A}{da_+} / \frac{d\sigma_B}{da_+}$	• 0
-E866	1
-E772	(

ATLAS CMS

SIDIS Measurements

-Prelim. RHIC

- Multiplicity ratio $R_h^A = M_h^A/M_h^D$. -HERMES 2007 -Prelim. JLab -Planned JLab
 - -Possible EIC.

Collaboration	Process	Baseline	Nuclei	N _{dat}	χ^2
HERMES [36]	SIDIS (π)	D	Ne, Kr, Xe	27	16.3
RHIC [44]	DY	р	Au	4	2.0
E772 [42]	DY	D	C, Fe, W	16	20.1
E866 [43]	DY	Be	Fe, W	28	43.3
CMS [45]	γ^*/Z	NA	Pb	8	9.7
ATLAS [46]	γ^*/Z	NA	Pb	7	13.1
Total				90	105.2

$d\sigma/dq_{\perp} ~({ m p\,Pb})$

Nuclear imaging in 3D

Global fitting of nuclear TMDs

Reasonable good overall description on world data from HERMES, FNAL, RHIC, LHC

Alrashed, Anderle, Kang, Terry, HX, PRL 2022

Nuclear imaging in 3D

 First time quantitative determination of nuclear TMDs

Identification of transverse momentum broadening in nuclei

Testing leading power QCD factorization at BES/STCF

\clubsuit What's the boundary for Q^2 to ensure the validity of leading twist QCD factorization?

Generalized factorization theorem

perturbative expansion $\sigma_{phys}^{h} = \left[\alpha_s^0 C_2^{(0)} + \alpha_s^1 C_2^{(1)} + \alpha_s^2 C_2^{(2)} + \dots \right] \otimes T_2(x)$

30

Test leading power QCD factorization at BES/STCF

BESIII Collaboration • M. Ablikim et al. e-Print: 2211.11253

- Predictions on low-z and low- Q^2 do not agree with data and depend on chosen FFs:

 - Data input, initial evolution scale μ_0 and kinematical cuts are different for the FFs.

NNLO (SIA data only)

- Fixed order calculation ARS AKRS Includes small-z resum. NNFFI.0 Includes hadron mass effects NLO
 - Includes low energy SIDIS data MAPFF

Testing leading power QCD factorization at BES/STCF

A test from data driving analysis of high twist contribution

BESIII + Li, Anderle, **HX**, PRL, 2024 Li, Anderle, HX, Zhao, 2024

$$\sigma \approx \sigma^{LT} \left[1 + \sum_{i} N_i \frac{x^{a_i}(1-x)^{b_i}}{Q^{2i}} \right]$$

- Hint of leading twist factorization breaking?
- BES/STCF kinematic coverage is unique to answer this question!

FFs as a tool to probe hot dense medium

Track the time evolution of nuclear medium

 Observables involving FFs: single incl hadron, jet fragmentation function

• Observables involving FFs: single inclusive hadron, di-hadron, photon/Z tagged

33

FFs as a tool to probe hot dense medium

Extract the medium property

Xing, Cao, Qin, 2023

- Verify the flavor hierarchy of parton energy loss in medium
- Extract the jet transport parameter of quark-gluon plasma

- fragmentation functions
- Benefits of using FFs to probe nucleon/nuclear/hot dense medium property
- Unique opportunities to test QCD factorization for hadron production at BES/STCF

Thanks for your attention!

Introduction of collinear and transverse momentum dependent