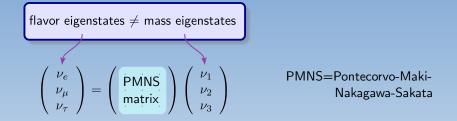
Neutrino oscillations

OXFORD

xiv

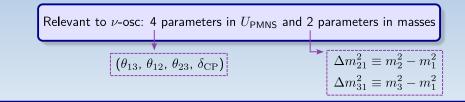
6

e---7


9

CONTENTS

	$5.2 \\ 5.3$	Hadron decays Neutrino–nucleon scattering	$147 \\ 160$
6		sive neutrinos Dirac masses Majorana neutrinos Mixing of three Majorana neutrinos One-generation Dirac-Majorana mass term Three-generation Dirac-Majorana mixing Special cases Majorana mass matrix	180 180 188 208 216 229 235 237
7		trino oscillations in vacuum Standard Derivation of the Neutrino Oscillation Probability Antineutrino case CPT, CP, and T transformations Two-neutrino mixing Types of neutrino oscillation experiments Averaged transition probability Large Δm^2 dominance Active small Δm^2	245 247 254 256 259 261 267 273 277
8	Theo 8.1 8.2 8.3 8.4	pry of neutrino oscillations in vacuum Plane-wave approximation Wave-packet treatment Size of neutrino wave packets Questions	283 284 299 311 316
9	9.1 9.2 9.3 9.4 9.5 9.6	trino oscillations in matter Effective potentials in matter Evolution of neutrino flavors The MSW effect Slab approximation Parametric resonance Geometrical representation	322 323 329 331 339 341 343
10	Solar 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	r neutrinos Thermonuclear energy production Standard solar models Model-independent constraints on solar neutrino fluxes Homestake experiment Gallium experiments Water Cherenkov detectors Vacuum oscillations Resonant flavor transitions in the Sun Regeneration of solar ν_{ν} 's in the Earth	352 353 359 364 366 368 372 381 382 387


Fundamentals of Neutrino Physics and Astrophysics

2

- If you're familiar with the CKM mixing in the quark sector, then it's fairly easy to understand this.
- Otherwise, here is the explanation:
 - ν is typically produced/detected via, e.g. $\nu + \cdots \rightarrow \cdots + \ell$ or $\cdots \rightarrow \nu + \overline{\ell} + \cdots$.
 - The accompanying charged lepton (ℓ) is experimentally much easier to be identified.
 - Hence we label the corresponding u by u_{ℓ} , which is a flavor eigenstate.
 - However, flavors eigenstates are not mass eigenstates, but linear combinations of them.
 - The linear (unitary) transformations between them is known as the PMNS matrix
 - Production/detection: use (ν_e , ν_μ , ν_τ); Propagation: use (ν_1 , ν_2 , ν_3).

Neutrino masses and mixing: relevant parameters and current measurements

Current measurements (not up-to-date on purpose):

C

뇌 Menu

- Home
- Results
- Publications
- Members
- Login

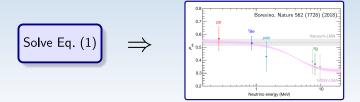
Home

v5.3: Three-neutrino fit based on data available in March 2024

Menu

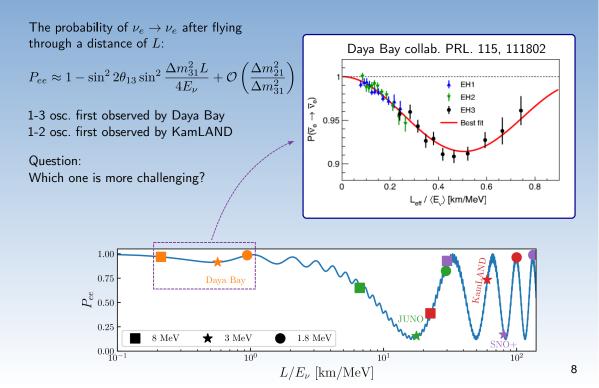
- Summary of data included
- Parameter ranges
- Leptonic mixing matrix
- Two-dimensional allowed regions
- One-dimensional χ² projections
- CP-violation: Jarlskog invariant
- CP-violation: unitarity triangle
- Tension between Solar and KamLAND data
- Synergies: atmospheric mass-squared splitting
- Synergies: disappearance data and θ_{23}
- Synergies: determination of θ₂₃
- Synergies: determination of δ_{CP}
- Synergies: determination of Δm²_{3t}
- Correlation between δ_{CP} and other parameters

		Normal Ore	lering (best fit)	g (best fit) Inverted Ordering ($\Delta \chi^2 = 2.3$)				Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 9.1)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range			bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$	data	$\sin^2 \theta_{12}$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$
data	$\theta_{12}/^{\circ}$	$33.66^{+0.73}_{-0.70}$	$31.60 \rightarrow 35.94$	$33.67^{+0.73}_{-0.71}$	$31.61 \rightarrow 35.94$		$\theta_{12}/^{\circ}$	$33.67^{+0.73}_{-0.71}$	$31.61 \rightarrow 35.94$	$33.67^{+0.73}_{-0.71}$	$31.61 \rightarrow 35.94$
ıeric	$\sin^2 \theta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.407 \rightarrow 0.620$	$0.578^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.623$	eric d	$\sin^2 \theta_{23}$	$0.454^{+0.019}_{-0.016}$	$0.411 \rightarrow 0.606$	$0.568\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.611$
atmospheric	$\theta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	$39.9 \rightarrow 52.1$	sph	$\theta_{23}/^{\circ}$	$42.3^{+1.1}_{-0.9}$	$39.9 \rightarrow 51.1$	$48.9^{+0.9}_{-1.2}$	$39.9 \rightarrow 51.4$
	$\sin^2\theta_{13}$	$0.02203\substack{+0.00056\\-0.00058}$	$0.02029 \to 0.02391$	$0.02219\substack{+0.00059\\-0.00057}$	$0.02047 \to 0.02396$	atmo	$\sin^2 \theta_{13}$	$0.02224\substack{+0.00056\\-0.00057}$	$0.02047 \to 0.02397$	$0.02222\substack{+0.00069\\-0.00057}$	$0.02049 \to 0.02420$
t SK	$\theta_{13}/^{\circ}$	$8.54^{+0.11}_{-0.11}$	$8.19 \rightarrow 8.89$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.90$	SK	$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.13}_{-0.11}$	$8.23 \rightarrow 8.95$
without	$\delta_{\mathrm{CP}}/^{\circ}$	197^{+41}_{-25}	$108 \to 404$	286^{+27}_{-32}	$192 \to 360$	with	$\delta_{\rm CP}/^{\circ}$	232^{+39}_{-25}	$139 \to 350$	273^{+24}_{-26}	$195 \to 342$
W	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.81 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	$6.81 \rightarrow 8.03$		$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41\substack{+0.21\\-0.20}$	$6.81 \rightarrow 8.03$	$7.41\substack{+0.21 \\ -0.20}$	$6.81 \rightarrow 8.03$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.511\substack{+0.027\\-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498\substack{+0.032\\-0.024}$	$-2.581 \rightarrow -2.409$		$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.505\substack{+0.024\\-0.026}$	$+2.426 \rightarrow +2.586$	$-2.487\substack{+0.027\\-0.024}$	$-2.566 \rightarrow -5407$


The Schrödinger equation:

$$i\frac{d}{dL}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} = H\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix}, \qquad (1)$$

$$H = \frac{1}{2E_{\nu}}U_{\rm PMNS}\begin{pmatrix}m_{1}^{2}\\m_{2}^{2}\\m_{3}^{2}\end{pmatrix}U_{\rm PMNS}^{\dagger} + \begin{pmatrix}V_{e}\\0\\0\end{pmatrix}, \qquad (2)$$


$$\begin{pmatrix}c_{12}c_{13}}{m_{3}^{2}}c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{13}s_{23}\\c_{12}s_{13}-c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{13}s_{23}\\s_{12}s_{23}-c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{13}s_{23}\\c_{13}s_{23}-c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{13}s_{23}\\c_{13}s_{13}-c_{13}-c_{13}s_{13}+c_{13}-c_{13}-c_{13}+c_{13}-c_{13}+c_{13}-c_{13}+c$$

where $V_e\equiv\sqrt{2}G_Fn_e$ is the MSW effective potential.

Neutrinos are in general relativistic, while the Schrödinger equation only deals with nonrelativistic particles. So why can it be used here?

- It is a Schrödinger-like equation, not the Schrödinger equation
- The fundamental cause of ν -osc: dispersion relations
- It's misleading to say "ν-osc can be derived from QM, without QFT"
 - I would say " ν -osc can be derived even without QM"
- - My suggestion: good exercise! But don't be too much on it.

A very well-known effect in the field of neutrino physics:

The matter effect, aka, the MSW effect

When ν propagates in matter, ν -osc is modified by matter.

Sounds obvious?

. . .

You may whisper: "... of course! Every particle propagating in a medium is affected by the medium."

When I was an undergraduate, I thought it was trivial too.

An estimate

 $\begin{array}{c} \nu \text{ can fly through the Sun/Earth so easily} \\ \sigma nL = 10^{-41} \text{cm}^2 \times 5 \text{g/cm}^3/m_n \times 6400 \text{km} \\ = 10^{-11} \\ \text{only } 1/10^{11} \text{ neutrinos are stopped by scattering} \end{array} \xrightarrow{\text{Question}} \\ \begin{array}{c} \text{Only } 10^{-11}! \text{ Why matter matters?} \\ \text{Answer: coherency} \end{array}$

 $\begin{array}{c} \nu \\ \hline \nu \\ \hline \end{array} \end{array} \Rightarrow \begin{array}{c} \nu \\ \hline \\ W \\ \hline \\ V_W = G_F n_e \end{array}$

The concept of "coherent forward scattering"

 \neq scattering with individual particles \equiv scattering with all particles simultaneously

All particles, together, form an effective potential -----

Neutrino oscillation in matter

$$i\frac{d}{dL}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} = H\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix},$$
(1)

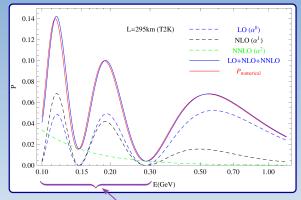
$$H = \frac{1}{2E_{\nu}} U_{\rm PMNS} \begin{pmatrix} m_1^2 & & \\ & m_2^2 & \\ & & m_3^2 \end{pmatrix} U_{\rm PMNS}^{\dagger} + \begin{pmatrix} V_e & & \\ & 0 & \\ & & 0 \end{pmatrix},$$
(2)

The MSW effect is important in solar/atmospheric/accelerator neutrino oscillations

An outline of next few slides:

- For accelerator neutrinos
 - Freund's formula
- For solar neutrinos
 - Simple analytic formula for students
 - Adiabatic approximation
 - Earth matter effect (D/N asymmetry)

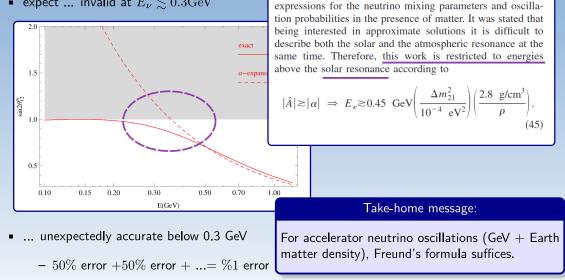
If you solve Eq. (1) by brute force, then you can ignore them all!


→ ... which I strongly discourage

Freund's formula

In long-baseline accelerator neutrino experiments (T2K, MINOS, NOvA, DUNE, etc.), there is a simple formula to include the MSW effect

$$P(\nu_{\mu} \to \nu_{e}) = 4s_{13}^{2}c_{13}^{2}s_{23}^{2}\frac{\sin^{2}(1-A)\Delta}{(1-A)^{2}} + 8\alpha \frac{J_{CP}}{s_{\delta}}\cos(\Delta+\delta)\frac{\sin A\Delta}{A}\frac{\sin(1-A)\Delta}{1-A} + 4\alpha^{2}s_{12}^{2}c_{12}^{2}c_{23}^{2}\frac{\sin^{2}A\Delta}{A^{2}}$$

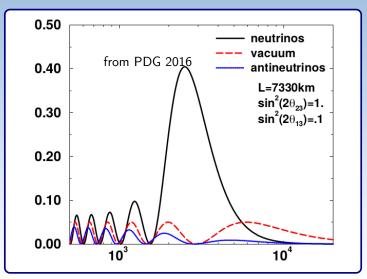

$$A \equiv 2\sqrt{2} \frac{G_F N_c E_\nu}{\Delta m_{31}^2}, \quad \alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \approx 0.03, \quad \Delta \equiv \frac{\Delta m_{31}^2 L}{4E_\nu}$$

- Originally derived by M. Freund [Phys.Rev.D 64 (2001) 053003]
- Very accurate in practical use
- obtained by series expansion in $\dot{\alpha}$
- The author expected it to be invalid at $E_{\nu} \lesssim 0.3 {\rm GeV}$

Freund's formula

- obtained by series expansion in α
- expect ... invalid at $E_{\nu} \lesssim 0.3 \text{GeV}$

VII. CONCLUSIONS


The purpose of this work was to find approximate analytic

later studies reveal that there are hidden but guaranteed cancellations

Neutrino oscillation in matter

A worth mentioning example:

- very long baseline, very high energy
 - huge enhancement by the MSW effect
- the so-called neutrino factory ... no longer interested after 2012

Simple analytic formula for students:

 $P_{ee} = (c_{13}c_{13}^m)^2 \left(\frac{1}{2} + \frac{1}{2}\cos 2\theta_{12}^m \cos 2\theta_{12}\right) + (s_{13}s_{13}^m)^2,$

$$\cos 2\theta_{12}^m \approx \frac{\cos 2\theta_{12} - \beta_{12}}{\sqrt{(\cos 2\theta_{12} - \beta_{12})^2 + \sin^2 2\theta_{12}}},$$
$$(s_{13}^m)^2 \approx s_{13}^2 (1 + 2\beta_{13}),$$
$$\beta_{12} \equiv \frac{2c_{13}^2 V_e^0 E_\nu}{\Delta m_{21}^2},$$
$$\beta_{13} \equiv \frac{2V_e^0 E_\nu}{\Delta m_{31}^2}.$$

effective mixing angles

If matter density $\rightarrow 0 \ (\beta_{12,13} \rightarrow 0)$, $\cos 2\theta_{12}^m \rightarrow \cos 2\theta_{12}; \ s_{13}^m \rightarrow s_{13}$

- simple and fast, of practical use
 - especially for those students addicted to coding:-)
- sufficient accuracy
 - for current precision of measurement
- straightforward to see how P_{ee} varies with θ_{12} , θ_{13} , ...

Maltoni and Smirnov [1507.05287]

Simple analytic formula for students

If $\theta_{13} \rightarrow 0$, more simplified:

$$P_{ee}^{\odot} = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{12}^{m}\cos 2\theta_{12}$$

$$\cos 2\theta_{12}^m \approx \frac{\cos 2\theta_{12} - \beta_{12}}{\sqrt{(\cos 2\theta_{12} - \beta_{12})^2 + \sin^2 2\theta_{12}}}, \qquad \theta_{12}^m \to \begin{cases} \theta_{12} & (\beta_{12} \to 0) \\ -1 & (\beta_{12} \to \infty) \end{cases}$$
$$\beta_{12} \equiv \frac{2V_e^0 E_\nu}{\Delta m_{21}^2},$$

vacuum limit ($\beta_{12} \rightarrow 0$):

$$P_{ee} \approx c_{12}^4 + s_{12}^4 \approx 5/9$$

strong matter effect limit ($\beta_{12} \rightarrow \infty$):

$$P_{ee} \approx s_{12}^2 \approx \frac{1}{3}$$

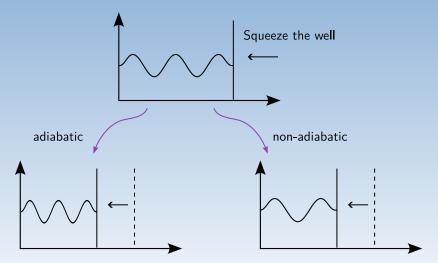
vacuum limit ($\beta_{12} \rightarrow 0$):

$$P_{ee} \approx c_{12}^4 + s_{12}^4 \approx 5/9$$

strong matter effect limit ($\beta_{12} \rightarrow \infty$):

$$P_{ee} \approx s_{12}^2 \approx \frac{1}{3}$$

The result is easy to understand:


- When ν_e is produced, it consists of $c_{12}\nu_1 + s_{12}\nu_2$. Each mass eigenstate propagates to the Earth independently. Due to the long distance they lose coherence. At production, the probability of ν_e being ν_1 (ν_2) is c_{12}^2 (s_{12}^2); at detection, the probability of ν_1 (ν_2) being detected as ν_e is also c_{12}^2 (s_{12}^2). Hence the survival probability of ν_e at detection is given by $(c_{12}^2)^2 + (s_{12}^2)^2$.
- When ν_e is produced at the center with a high electron number density, it is almost pure ν_2^m due to the strong matter effect ($\theta_{12}^m \approx 90^\circ$). As the density slowly decreases to zero, the evolution of all mass eigenstates is adiabatic, which means ν_2^m will eventually come out to the surface as ν_2 . Since the probability of ν_2 being detected as ν_e is s_{12}^2 , the survival probability in the high- E_{ν} limit is simply s_{12}^2 .

The adiabatic approximation

What does "adiabatic" mean?

Quantum mechanics:

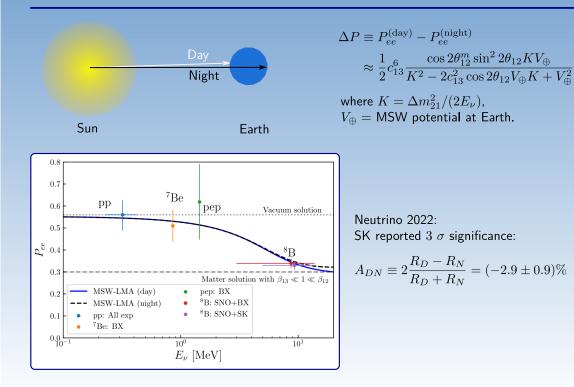
Consider a wave function in a well ...

The adiabatic approximation

What does "adiabatic" mean for solar neutrinos?

How good is it?

 $\delta P \sim \frac{\gamma^2}{4} \lesssim 10^{-7}$


More generally,

smirnov et al [hep-ph/0404042]

$$\gamma \equiv \frac{4\Delta m_{21}^2 E_{\nu}^2 \sin 2\theta_{12}}{\left(\Delta m_{21}^4 \sin^2 2\theta_{12} + \left(\Delta m_{21}^2 \cos 2\theta_{12} - 2E_{\nu} V_e\right)^2\right)^{3/2}} \frac{dV_e}{dr} \ll 1$$

most fragile at resonance: $\gamma_{\text{resonance}} = \frac{4E_{\nu}^2}{\Delta m_{21}^4 \sin^2 2\theta_{12}} \frac{dV_e}{dr}$ still good enough: 1 GeV $\rightarrow \gamma \approx 0.1$

The Earth matter effect (aka Day-Night asymmetry)

