BSM theories of neutrino masses

Seesaw (Type-I/II/III), ν MSM, radiative mass models, GUTs ...

The standard model and the missing u_R

- Compared to other SM fermion masses, we have the extra M term.
- It's OK to have M here, if it's heavy.
 - Heavy $M \rightarrow \text{light } m_{\nu}$
 - Heavy ${\cal M}$ favored by GUTs and other theories.

The underlying philosophy: If you cannot forbid it, let it grow!

$$m_e e_L e_R + m \nu_L \nu_R$$
 or $m_e e_L^{\dagger} e_R + m \nu_L^{\dagger} \nu_R$?

I'm using the Weyl spinor notation:

Weyl/Dirac/Majorona spinors and Majorana masses

- Weyl spinors $(\chi, \chi^{\dagger}, \xi, ...)$:
 - the most fundamental building block
 - conceptually and formally simple: $m\chi\xi$, $m\chi\chi$, ...,
 - but not popular in Feynman diagram calculations

though I do know some people use it to compute everything

- Dirac spinors $\Psi = (\chi, \xi^{\dagger})$:
 - familiar to everybody;
 - convenient in calculations;
 - * in particular, in calculation tools (FeynCalc/Package X, ...)
- Majorana spinors $\Psi = (\chi, \chi^{\dagger})$:
 - inherit the above convenience;
 - * practically useful to deal with $m\chi\chi$
 - but, quite often, conceptually misleading to those who lack the knowledge of $\chi.$

E.g., "Majorana neutrinos \rightarrow particle=antiparticle" in conflict with "solar neutrino/reactor antineutrino"?

Note

Majorana spinors are only computational techniques!

The Majorana paradox

We often say "If neutrinos are Majorana, they are their own antiparticles". But why in actual experiments, neutrinos \neq antineutrinos?

E.g.,

IBD-based detectors only detect electron antineutrinos, unable to detect solar neutrinos.

Reactors produce antineutrinos

T2K switches between neutrino and antineutrino modes

Answer:

Saying "Majornana neutrinos" itself is misleading.

What would you call them if (ν_L, ν_R) have the following mass matrices?

$$\left[\begin{array}{cc} 0 & \times \\ \times & 0 \end{array}\right], \left[\begin{array}{cc} \times & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} \times & 0 \\ 0 & \times \end{array}\right], \left[\begin{array}{cc} \epsilon & \times \\ \times & \epsilon \end{array}\right], \left[\begin{array}{cc} 0 & \times \\ \times & \times \end{array}\right]$$

Dirac? Majorana? Hybrid? Pseudo-Dirac?

The way to avoid confusion

Majorana neutrinos X Majorana masses ✓

Abstract:

We show that the extension of the standard model by three right-handed neutrinos with masses smaller than the electroweak scale (the ν MSM) can explain simultaneously dark matter and baryon asymmetry of the universe and be consistent with the experiments on neutrino oscillations. Several constraints on the parameters of the ν MSM are derived.

Due to its success, many people believe this is the necessary step (final step?) to go beyond the SM.

- Essentially the seesaw model
 - or, we could say: $\nu \mathsf{MSM} \subset \mathsf{the}$ seesaw model
- Main difference: ν_R below the EW scale
 - one of them is particularly light (keV) \rightarrow dark matter
 - * in general, unstable; but keV $\rightarrow \tau_{\nu_R} \gg \tau_{\text{universe}}$.

In fact, without introducing new particles to the SM, it is also possible to generate neutrino masses, if you give up renormalizability.

Higgs VEV
$$\langle H \rangle \sim v$$
, so $m_{\nu} \sim \frac{v^2}{\Lambda}$
 $m_{\nu} \sim 0.1 \text{ eV} \rightarrow \Lambda \sim 10^{14} \text{ GeV}$

UV completions at tree level: three ways to open up the effective vertices:

introducing ν_R $SU(2)_L$ singlet fermion

A brief note on radiative neutrino mass models

Basic idea: neutrino masses don't have to be a tree-level effect. They could be a loop effect.

see 1706.08524 for a review

More comments on the scotogenic model:

- by E. Ma [hep-ph/0601225], ~ 1.5 k citations, the simplest model $\supset \nu$ mass + stable DM
- All new particles $\sim Z_2$ or $U(1)_{dark}$, \Rightarrow the stability of DM.
- scoto (Greek word) ≈ darkness. "scotogenic" ≈ "created from darkness"

Very common: most models \Rightarrow the Weinberg operator

... which always gives neutrinos Majorana masses

How do we test this? Searching for lepton-number-violating (LNV) processes.

The most promising approach: neutrinoless double beta decay $(0\nu\beta\beta)$.

 $(A,Z) \rightarrow (A,Z+2) + 2e^-$

Majorana masses and $0 u\beta\beta$

