BSM CPV: Electric Dipole Moments & More

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

About MJRM:

Science

Family

Friends

USTC Lectures June 4-6, 2024

My pronouns: he/him/his # *MeToo*

• <u>mjrm@umass.edu</u>

- mjrm@sjtu.edu.cn
- 微信 : mjrm-china
- https://michaelramseymusolf.com/

The Search for an EDM: Why Physicists Should Care

• Theorists think it's interesting

• It's something we can do

• It addresses fundamental Q's

EDM's & Fundamental Questions

- Do the fundamental laws of nature violate CP beyond the known CKM CPV ?
- Why does the Universe contain more matter than anti-matter ?
- What is the mass scale associated with Beyond the Standard Model Physics ?
- Is BSM physics perturbative or strongly coupled ?

Themes for This Talk

- EDMs provide powerful "tabletop" probe of high energy and/or early universe fundamental physics
- Searches with multiple, complementary systems are essential
- The theoretical interpretation of EDMs entails a rich and challenging interplay of physics at multiple scales
- Significant discoveries are possible, while limits yield tremendous insight
- This is an area of exciting opportunities and challenges for both experiment and theory

Outline

- I. EDM Basics & the BSM context
- II. Experimental Situation
- III. Theoretical Interpretation
- **IV. BSM Implications**
- V. Outlook

References

- Engel, MJRM, van Kolck: Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371]
- Pospelov & Ritz, Ann. Phys. 318 (2005) 119 [hep-ph/0504231]
- Chupp & MJRM, Phys. Rev. C91 (2015) 035502 [arXiv:1407.1064]
- Morrissey & MJRM, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942]
- Flambaum & Ginges, Phys. Rept. 397 (2004) 63 [physics/0309054]
- Chupp, Fierlinger, MJRM, Singh [1710.02504]

I. EDM Basics

7

$$v_{EDM} = -\frac{d\vec{S}\cdot\vec{E}}{h}$$

8

T-odd , CP-odd by CPT theorem

J=1/2, relativistic particles

$$\langle p'|J_{\mu}^{\mathrm{EM}}|p\rangle = \bar{U}(p')\left[F_{1}\gamma_{\mu} + \frac{iF_{2}}{2M}\sigma_{\mu\nu}q^{\nu} + \frac{iF_{3}}{2M}\sigma_{\mu\nu}\gamma_{5}q^{\nu} + \frac{F_{A}}{M^{2}}(q^{2}\gamma_{\mu} - \not{q}q_{\mu})\gamma_{5}\right]U(p)$$

F ₁ :	Dirac (charge) form factor	P, T Conserving
F ₂ :	Pauli (magnetic) ff	P, T Conserving
F ₃ :	Electric Dipole ff	P, T Violating
F _A :	Anapole ff	P Violating

Non-relativistic diamagnetic systems

Non-relativistic diamagnetic systems

What is an EDM? Non-relativistic diamagnetic systems

What is an EDM? Non-relativistic diamagnetic systems

$d_n \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$

$$d_n \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$$

 $d_n^{CKM} = (1 - 6) \times 10^{-32} \text{ e cm}$
C. Seng arXiv: 1411.1476

$d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$

$d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times |\sin\phi| \times y_f F$ CPV Phase: large enough for baryogenesis ?

v = 246 GeV Higgs vacuum expectation value A > 246 GeV Mass scale of BSM physics

$d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$

BSM dynamics: perturbative? Strongly coupled?

Fermion f Yukawa coupling Function of the dynamics

- Baryon asymmetry
- High energy collisions
- EDMs

Cosmic Frontier Energy Frontier Intensity Frontier

II. Experimental Situation

22

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
HfF*	4.1 x 10 ⁻³⁰ **	10 - ³⁸ *	10 ⁻²⁸
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL ** e⁻ equivalent * e⁻ equivalent from C_s

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 -29
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL

$$v_{EDM} = -\frac{dS \cdot (-E)}{h}$$

T-odd , CP-odd by CPT theorem

 d_n : x < 0.25 mm

C-Y Liu

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸ *	10 ⁻²⁸
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL

** e⁻ equivalent

* e⁻ equivalent from C_S

Not shown: muon

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
HfF*	4.1 x 10 ⁻³⁰ **	10 - ³⁸ *	10 -28
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL ** e⁻ equivalent * e⁻ equivalent from C_s

Mass Scale Sensitivity

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 -29
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity Challenge for EWBG $sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$

M < 500 GeV \rightarrow sin ϕ_{CP} < 10⁻²

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁸
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

- EDMs arise at > 1 loop
- CPV is flavor non-diagonal
 - CPV is "partially secluded"

Why Multiple Systems ?

29

Why Multiple Systems ?

Multiple sources & multiple scales

II. Theoretical Interpretation

31

Effective Operators: The Elevator

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}} = rac{1}{\Lambda^2} \sum_i \alpha_i^{(n)} O_i^{(6)}$$

+...

Effective Field Theory

Effective Field Theory

Effective Field Theory

Pure Gauge		Gauge-Higgs		Gauge-Higgs-Fermion	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu \nu} G^{A \mu \nu}$	Q_{uG}	$(\bar{Q}\sigma^{\mu u}T^Au)\widetilde{\varphi}G^A_{\mu u}$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu u}T^{A}d)\varphiG^{A}_{\mu u}$
		$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{fW}	$(\bar{F}\sigma^{\mu\nu}f)\tau^{I}\Phi W^{I}_{\mu\nu}$
		$Q_{arphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{fB}	$(\bar{F}\sigma^{\mu\nu}f)\Phi B_{\mu\nu}$

Weinberg 3 gluon

Pure Gauge		Gauge-Higgs		Gauge-Higgs-Fermion	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu \nu} G^{A \mu \nu}$	Q_{uG}	$(\bar{Q}\sigma^{\mu\nu}T^A u)\widetilde{\varphi}G^A_{\mu\nu}$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu\nu}T^Ad)\varphi G^A_{\mu\nu}$
		$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{fW}	$(\bar{F}\sigma^{\mu\nu}f)\tau^{I}\Phi W^{I}_{\mu\nu}$
		$Q_{arphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{fB}	$(\bar{F}\sigma^{\mu\nu}f)\Phi B_{\mu\nu}$

Quark chromo-EDM

Pure Gauge		Gauge-Higgs		Gauge-Higgs-Fermion	
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu \nu} G^{A \mu \nu}$	Q_{uG}	$(\bar{Q}\sigma^{\mu\nu}T^A u)\widetilde{\varphi}G^A_{\mu\nu}$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu\nu}T^Ad)\varphiG^A_{\mu\nu}$
		$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{fW}	$(\bar{F}\sigma^{\mu\nu}f)\tau^{I}\Phi W^{I}_{\mu\nu}$
		$Q_{arphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{fB}	$(\bar{F}\sigma^{\mu\nu}f)\Phi B_{\mu\nu}$

Fermion EDM

Semileptonic: atomic & molecular EDMs

Nonleptonic: hadronic EDMs & Schiff moment

Wilson Coefficients: Summary

12 total + $\overline{\theta}$

light flavors only (e,u,d)

Wilson Coefficients: Summary

o_f termion EDIM (3)	
$\tilde{\delta}_q$ quark CEDM (2)	
$C_{\widetilde{G}}$ 3 gluon (1)	
C _{quqd} non-leptonic (2)	
C _{lequ, ledq} semi-leptonic (3)	
$C_{\varphi ud}$ induced 4f (1)	

12 total + $\overline{\theta}$ light flavors only (e,u,d)

Complementary searches needed

Effective Field Theory

Effective Field Theory

$$\mathcal{L}_{N\pi}^{\text{PVTV}} = -2\bar{N} \left(\bar{d}_{0} + \bar{d}_{1}\tau_{3} \right) S_{\mu}N v_{\nu}F^{\mu\nu} + \bar{N} \left[\bar{g}_{\pi}^{(0)} \boldsymbol{\tau} \cdot \boldsymbol{\pi} + \bar{g}_{\pi}^{(1)}\pi^{0} + \bar{g}_{\pi}^{(2)} \left(3\tau_{3}\pi^{0} - \boldsymbol{\tau} \cdot \boldsymbol{\pi} \right) \right] N + \bar{C}_{1}\bar{N}N \,\partial_{\mu} \left(\bar{N}S^{\mu}N \right) + \bar{C}_{2}\bar{N}\boldsymbol{\tau}N \cdot \partial_{\mu} \left(\bar{N}S^{\mu}\boldsymbol{\tau}N \right) + \cdots$$

$$\mathcal{L}_{N\pi}^{\text{PVTV}} = -\frac{2\bar{N}\left(\bar{d}_{0} + \bar{d}_{1}\tau_{3}\right)S_{\mu}N v_{\nu}F^{\mu\nu}}{+\bar{N}\left[\bar{g}_{\pi}^{(0)}\tau \cdot \pi + \bar{g}_{\pi}^{(1)}\pi^{0} + \bar{g}_{\pi}^{(2)}\left(3\tau_{3}\pi^{0} - \tau \cdot \pi\right)\right]N} \\ + \bar{C}_{1}\bar{N}N \,\partial_{\mu}\left(\bar{N}S^{\mu}N\right) + \bar{C}_{2}\bar{N}\tau N \cdot \partial_{\mu}\left(\bar{N}S^{\mu}\tau N\right) + \cdots$$

Nucleon EDMs

$$\mathcal{L}_{N\pi}^{\text{PVTV}} = -2\bar{N} \left(\bar{d}_{0} + \bar{d}_{1}\tau_{3} \right) S_{\mu}N v_{\nu}F^{\mu\nu} + \bar{N} \left[\bar{g}_{\pi}^{(0)}\tau \cdot \pi + \bar{g}_{\pi}^{(1)}\pi^{0} + \bar{g}_{\pi}^{(2)} \left(3\tau_{3}\pi^{0} - \tau \cdot \pi \right) \right] N + \left(\bar{C}_{1}\bar{N}N \partial_{\mu} \left(\bar{N}S^{\mu}N \right) + \bar{C}_{2}\bar{N}\tau N \cdot \partial_{\mu} \left(\bar{N}S^{\mu}\tau N \right) + \cdots \right)$$

PVTV 4N interaction

Hadronic Matrix Element Challenge

How well can we compute the β , γ , λ , ... ?

Hadronic Matrix Elements

					_	
	Param	Coeff	Best value ^a	Range		
	$\bar{ heta}$	α_n α_p	0.002 0.002	(0.0005-0.004) (0.0005-0.004)		
	Im C _{qG}	$egin{smallmatrix} eta_n^{uG} \ eta_n^{dG} \ eta_n^{dG} \end{split}$	$\begin{array}{l} 4\times10^{-4}\\ 8\times10^{-4}\end{array}$	$(1 - 10) \times 10^{-4}$ $(2 - 18) \times 10^{-4}$		
	\tilde{d}_q	$e ilde{ ho}_n^u \\ e ilde{ ho}_n^d$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)		
	$ ilde{\delta}_q$	$e \tilde{\zeta}_n^u$ $e \tilde{\zeta}_n^d$	8.2×10^{-9} 16.3 × 10 ⁻⁹	$(2-20) \times 10^{-9}$ $(4-40) \times 10^{-9}$		
Progress: LANL LQCD	Im C _{qy}	$egin{array}{l} eta_n^{u\gamma} \ eta_n^{d\gamma} \ eta_n^{d\gamma} \end{array}$	$0.4 imes 10^{-3}$ -1.6 imes 10^{-3}	$(0.2 - 0.6) \times 10^{-3}$ -(0.8 - 2.4) × 10^{-3}		
	d_q	$ ho_n^u ho_n^d ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1		
	δ_q	ζ_n^u ζ_n^d	$\begin{array}{c} 8.2 \times 10^{-9} \\ -33 \times 10^{-9} \end{array}$	$\begin{array}{c} (4-12)\times 10^{-9} \\ -(16-50)\times 10^{-9} \end{array}$		
	C _Ĝ	$\beta_n^{\tilde{G}}$	2×10^{-7}	$(0.2 - 40) imes 10^{-7}$;
	Im C _{øud}	$\beta_n^{\varphi u d}$	3 × 10 ⁻⁸	$(1-10) \times 10^{-8}$	[
	$\operatorname{Im} C_{quqd}^{(1,8)}$	β_n^{quqd}	$40 imes 10^{-7}$	$(10 - 80) \times 10^{-7}$		
	$\operatorname{Im} C_{eq}^{(-)}$	$g_{S}^{(0)}$	12.7	11–14.5		
ngel, R-M, an Kolck:	Im C _{eq} ⁽⁺⁾	g _S ⁽¹⁾	0.9	0.6–1.2		

Hadronic Uncertainty

Effective Field Theory

Schiff Theorem

The Theorem

Classical picture: nonacceleration of neutral non-rel system The EDM of a neutral system will vanish if:

- Constituents are nonrelativistic
- Constituents are point-like
- Interactions are electrostatic

Classical picture: nonacceleration of neutral non-rel system The EDM of a neutral system will vanish if:

- Constituents are nonrelativistic
- Constituents are point-like
- Interactions are electrostatic

Paramagnetic systems w/ large Z: e⁻ are highly relativistic

Classical picture: nonacceleration of neutral non-rel system The EDM of a neutral system will vanish if:

- Constituents are nonrelativistic
- Constituents are point-like
- Interactions are electrostatic

Diamagnetic atoms w/ large A: nuclei are large $r \sim (1 \text{ fm}) \times A^{1/3}$

Classical picture: nonacceleration of neutral non-rel system The EDM of a neutral system will vanish if:

- Constituents are nonrelativistic
- Constituents are point-like
- Interactions are electrostatic

St'd Model magnetic interactions, BSM e-q interactions,...

Paramagnetic Systems: *d*_e

Electron EDM Interactions

Electron EDM: Heavy Atoms

Electron EDM: Polar Molecules

Electron experiences enhanced E_{int} as due to much smaller E_{ext}

Diamagnetic Atoms

Classical picture: nonacceleration of neutral non-rel system The EDM of a neutral system will vanish if:

- Constituents are nonrelativistic
- Constituents are point-like
- Interactions are electrostatic

Diamagnetic atoms w/ large A: nuclei are large $r \sim (1 \text{ fm}) \times A^{1/3}$

PVTV Nuclear Moments

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Nuclear Schiff Moment

Nuclear Schiff Moment

Nuclear Enhancements

Schiff moment, MQM,....

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Nuclear Schiff Moment

Nuclear Enhancements: Octupole Deformation

$$|\pm\rangle = \frac{1}{\sqrt{2}} (| \bullet \rangle \pm | \bullet \rangle)$$

Opposite parity states mixed by H^{TVPV}

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (¹⁹⁹Hg)
Nuclear Schiff Moment: Pion Exchange

$$S = a_0 g \,\bar{g}_{\pi}^{(0)} + a_1 g \,\bar{g}_{\pi}^{(1)} + a_2 g \,\bar{g}_{\pi}^{(2)}$$

Nuclear Schiff Moment: Pion Exchange

Non-perturbative hadronic computations

Nuclear Matrix Elements

Nucl.	Best value		
	<i>a</i> 0	<i>a</i> ₁	<i>a</i> ₂
¹⁹⁹ Hg ¹²⁹ Xe ²²⁵ Ra	0.01 0.008 1.5	± 0.02 -0.006 6.0	0.02 -0.009 -4.0
Range			
<i>a</i> ₀	<i>a</i> ₁		<i>a</i> ₂
0.005-0.05 -0.005-(-0.05) -1-(-6)	-0.03-(+0.09) -0.003-(-0.05) 4-24		0.01-0.06 -0.005-(-0.1) -3-(-15)

IV. BSM Implications

76