第八届R值与QCD强子结构研讨会

Determination of the Σ^+ timelike electromagnetic form factors

Based on Phys.Rev.Lett. 132, 081904 (2024) 8

Yue Xu

(On behalf of BESIII Collaboration)

Harbin, July 20-22, 2024

Outline

Introduction

Study of \Sigma^+ TL EMFFs at BESIII

2024/7/21

Introduction | Internal structure of nucleons

The proton (uud) and the neutron (udd) are collectively referred to as nucleons, and they are the lightest baryons. They make up over 99% of visible matter in the universe

At low Q, perturbative QCD does not work well (expansion of coupling constant α_S)

26.8%

68.3%

Nucleon structure must be measured in experiments!

Introduction | Electromagnetic form factors (EMFFs)

Fundamental properties of the baryon

- Connected to charge, magnetization distribution
- Crucial testing ground for models of the baryon internal structure

> The baryon electromagnetic vertex Γ_{μ} describing the hadron current:

$$\Gamma_{\mu}(p',p) = \gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m}F_{2}(q^{2})$$

Sachs FFs: $G_{E}(q^{2}) = F_{1}(q^{2}) + \frac{q^{2}}{4m}F_{2}(q^{2}), \ G_{M}(q^{2}) = F_{1}(q^{2}) + F_{2}(q^{2})$

> Dispersion relation: $F(t) = \frac{1}{\pi} \int_{t_0}^{\infty} \frac{ImF(t')}{t'-t-i\epsilon} dt', |G_{M,E}(-\infty)| = |G_{M,E}(\infty)|$

2024/7/21

Introduction | Electromagnetic form factors (EMFFs)

- > Hyperons and nucleons have very similar quark compositions
- \succ Research on hyperons can provide more information about the baryon system

Introduction | Spacelike(SL) EMFFs of hyperon

Only one experiment by elastic scattering of a Σ⁻ beam off atomic electrons
 Due to kinematic constraints, the range of |q²| for exploring EMFFs is limited

2024/7/21

Introduction | Timelike(TL) EMFFs of hyperon

Both techniques, energy scan and initial state radiation, can be used at BESIII

2024/7/21

Introduction | Data Samples Collected at BESIII

≻ R-scan (2.000-3.080 GeV, ~650 pb⁻¹)

BESIII provides an ideal platform for complete determination of the hyperon timelike EMFFs

2024/7/21

Introduction | Complete information of TL EMFFs

The hyperons can be produced in e⁺e⁻ annihilation above their production threshold > Born cross section($e^+e^- → B\overline{B}$ via one-photon

exchange): $\sigma_{B\overline{B}}(q^2) = \frac{4\pi\alpha^2 C\beta}{3q^2} [|G_M(q^2)|^2 + \frac{1}{2\tau} |G_E(q^2)|^2]$ $\gg \text{Ratio } |G_E/G_M| \text{ reflects polar angle distribution of}$

produced baryon!

 \succ In the time-like region

 $G_{E}(q^{2}) = |G_{E}(q^{2})|e^{i\Phi_{E}};$ $G_{M}(q^{2}) = |G_{M}(q^{2})|e^{i\Phi_{M}}$

> Relative phase: $\Delta \Phi = \Phi_E - \Phi_M$

2024/7/21

Introduction | Complete information of TL EMFFs

- > A non-zero phase has polarization effect on the hyperon, $P_y \propto \sin(\Delta \Phi)$ $P_y = \frac{\sqrt{1 - \alpha^2} \sin\theta \cos\theta}{1 + \alpha \cos^2 \theta} \frac{\text{Phys. Lett. B 772, 16-20 (2017)}}{\sin(\Delta \Phi)}$
- The angular distribution of daughter baryon from Hyperon weak decay is: $\frac{d\sigma}{d\Omega} \propto 1 + \alpha_Y P_y \cdot \hat{q}$
 - α_Y asymmetry parameter
 - \hat{q} : unit vector along the daughter baryon in hyperon rest frame

$$\begin{split} \mathcal{W}(\xi) &\propto \mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi) \\ &+ \alpha_1 \alpha_2 \left(\mathcal{F}_1(\xi) + \sqrt{1 - \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2(\xi) - \alpha \mathcal{F}_6(\xi) \right) \\ &+ \sqrt{1 - \alpha^2} \sin(\Delta \Phi) (-\alpha_1 \mathcal{F}_3(\xi) + \alpha_2 \mathcal{F}_4(\xi)) \end{split}$$

With hyperon weak decay to Baryon+Meson, the complete information of TL EMFFs $\sqrt{r^2}$ $\sqrt{1-r^2}$

(ratio
$$|G_E/G_M| = \sqrt{\frac{q^2}{4m_{\Sigma}^2}} \sqrt{\frac{1-\alpha}{1+\alpha}}$$
 and relative phase $\Delta \Phi$) can be determined!

2024/7/21

Introduction | Experimental status of hyperon TL EMFFs

$\succ \Lambda EMFFs$

• The first complete measurement of the EMFFs of the hyperon at 2.3960 GeV

 $|G_E/G_M| = 0.96 \pm 0.14(\text{stat.}) \pm 0.02(\text{syst.})$ $\Delta \Phi = 37^\circ \pm 12^\circ(\text{stat.}) \pm 6^\circ(\text{syst.})$

(Confirm the complex form of EMFFs) Phys. Rev. Lett. 123, 122003 (2019)

$\succ \Sigma EMFFs$

Only $\Sigma^+ |G_E/G_M|$ is available, the experimental complete extraction of Σ EMFFs is lack yet ($\Delta \Phi = ?$)

 $|G_E/G_M| = 1.83 \pm 0.26 \pm 0.24$ at 2.3960 GeV $|G_E/G_M| = 0.66 \pm 0.15 \pm 0.11$ at 2.6454 GeV $|G_E/G_M| = 1.06 \pm 0.36 \pm 0.09$ at 2.9000 GeV Phys. Lett. B 814 136110 (2021)

Introduction | Relative phase from various models

Measurement of relative phase in a wide q^2 range would be crucial for testing various theoretical models and studying the asymptotic behavior in the TL region, and it will provide essential information for studying the dynamical mechanisms

2024/7/21

Study of Σ^+ TL EMFFs at BESIII > Decay: $e^+e^- \rightarrow \Sigma^+ (\rightarrow p\pi^0) \overline{\Sigma}^- (\rightarrow \overline{p}\pi^0)$ > Data:

$\sqrt{s}(\text{GeV})$	$\mathcal{L}(\mathbf{pb}^{-1})$		e ⁻	Σ^+ \hat{x}_1 \hat{z}_1
2.3960	66.87		\hat{x}_2	θ
2.6444	33.72 ح ر	Combined to 2.6454 GeV	\hat{z}_2 \hat{y}_2	e+ 2
2.6464	34.00			
2.9000	105.25			1

> Two different reconstruction methods are used to select $\Sigma^+ \overline{\Sigma}^-$ pairs

- Single tag(2.3960 GeV): $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^- \rightarrow anything + \overline{p}\pi^0$
- Double tag (2.64540 and 2.9000 GeV): $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^- \rightarrow p\pi^0 \overline{p}\pi^0$, but only one π^0 is reconstructed by two photons

2024/7/21

Study of Σ^+ TL EMFFs at BESIII

Maximum likelihood fit
C: estimated by PHSP MC

	2.3960 GeV	2.6454 GeV and 2.9000 GeV
Signal region	$1.185 < M_{bc} < 1.191 \text{ GeV/c}^2$	$1.150 < M_{bc} < 1.170 \text{ GeV/c}^2$
Sideband region	$1.150 < M_{bc} < 1.170 \text{ GeV/c}^2$	$1.141 < M_{\Sigma_{rec}} < 1.160 \text{ GeV/c}^2$ $1.220 < M_{\Sigma_{rec}} < 1.239 \text{ GeV/c}^2$
Background level	12.7%	7.7% and 10.2%

2024/7/21

Study of Σ^+ TL EMFFs at BESIII

2024/7/21

Summary

- ✓ The complete information of Σ^+ EMFFs in time-like is extracted
- ✓ For the first time, the phase $\Delta \Phi$ of the hyperon EMFFs is explored in a wide q^2
- ✓ $|G_E/G_M|$ and $\Delta \Phi$ line-shape is compared with $\overline{Y}Y$ model (J. Haidenbauer, U. G. Meißner, and L. Y. Dai, PRD 103, 014028 (2021)), different tendency in $\Delta \Phi$
- ✓ $\Delta \Phi$ distribution indicates there may be at least one $\Delta \Phi = 0^{\circ}$ between 2.3960 and 2.6454 GeV
- \checkmark The still increasing relative phase indicates the asymptotic threshold has not yet been reached

