粲强子非轻衰变过程中轻标量介子 a₀(1710/1817)的理论研究

王 恩 郑州大学

丁焱,朱欣,王镐楠,李德民,谢聚军,耿立升 PRD105(2022)116010,107(2023)034001,108(2023)114004, 2024年7月19日-23日@哈尔滨

Motivation-Scalar mesons

Masses puzzle: $a_0(980)/f_0(980)$, K(700), $a_0(500)$

 $> a_0(980)/f_0(980)$: $q\overline{q}$, tetraquark, hadronic molecules

> $f_0(1370), f_0(1500), f_0(1710)$ > $f_0(1710)$: glueball, $s\bar{s}, K^*\bar{K}^*$

Y. Chen,	PRD73(2006)01451	6
----------	------------------	---

	$\Gamma [\text{MeV}]$	isospin i	structure
$a_0(980)$	~ 50	1	$K\bar{K}, qq\bar{q}\bar{q}$
$f_0(980)$	~ 50	0	$Kar{K}, qqar{q}ar{q}$
$f_0(500)$	~ 800	0	$\pi\pi, qqar qar q$
$K_0^*(700)$	~ 600	$\frac{1}{2}$	$K\pi, qqar qar q$
$a_0(1450)$	265	1	$uar{d}, dar{u}, dar{d} - uar{u}$
$f_0(1370)$	~ 400	0	$dar{d}+uar{u}$
$f_0(1710)$	125	0	$s\bar{s}$
$K_0^*(1430)$	294	$\frac{1}{2}$	$uar{s}, dar{s}, sar{u}, sar{d}$

VV interaction from hidden-gauge lagrangians

The hidden-gauge Lagrangian Geng-Oset, **PRD79(2009)074009**

$$\begin{split} \mathcal{L} &= -\frac{1}{4} \langle \bar{V}_{\mu\nu} \bar{V}^{\mu\nu} \rangle + \frac{1}{2} M_{\nu}^{2} \langle [V_{\mu} - (i/g) \Gamma_{\mu}]^{2} \rangle, \\ \bar{V}_{\mu\nu} &= \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu} - ig[V_{\mu}, V_{\nu}], \\ \bar{V}_{\mu\nu} &= \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu} - ig[V_{\mu}, V_{\nu}], \\ \bar{V}_{\mu\nu} &= \frac{1}{2} \{ u^{\dagger} [\partial_{\mu} - i(v_{\mu} + a_{\mu})] u + u[\partial_{\mu} - i(v_{\mu} - a_{\mu})] u^{\dagger} \}, \\ u^{2} &= U = \exp(\frac{i\sqrt{2}\Phi}{f}) \\ \mathcal{L}_{VVV} &= \frac{1}{2} g^{2} \langle [V_{\mu}, V_{\nu}] V^{\mu} V^{\nu} \rangle, \\ \mathcal{L}_{VVV} &= ig \langle (\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}) V^{\mu} V^{\nu} \rangle, \\ \mathcal{L}_{VVV} &= ig \langle (\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}) V^{\mu} V^{\nu} \rangle \\ &= ig \langle V^{\mu} \partial_{\nu} V_{\mu} V^{\nu} - \partial_{\nu} V_{\mu} V^{\mu} V^{\nu} \rangle \\ &= ig \langle (V^{\mu} \partial_{\nu} V_{\mu} - \partial_{\nu} V_{\mu} V^{\mu}) V^{\nu} \rangle), \\ \mathcal{L}_{V\Phi\Phi} &= -ig \langle V_{\mu} [\Phi, \partial^{\mu} \Phi] \rangle. \\ \end{split}$$

 $g = \frac{M_V}{2f},$

Bethe-Salpeter equation

REAL OU UNIVERSITY

□Transition amplitude T

DOn-shell factorization

$$VGV = \int d^4q V(q^2) \frac{i}{q^2 - m_1^2 + i\epsilon} \frac{1}{(P - q)^2 - m_2^+ i\epsilon} V(q^2)$$

= $V(m^2)GV(m^2)$
 $V(q^2) = V(m^2) + \frac{\partial V}{q^2}|_{q^2 = m^2} (q^2 - m^2) \qquad G = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - M_{V1}^2} \frac{1}{q^2 - M_{V2}^2}$

$T = (1 - 1)^{-1}$	$VG)^{-1}V$
--------------------	-------------

Free parameter

5

□Loop function

$$G = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - M_{V1}^2} \frac{1}{q^2 - M_{V2}^2}$$

DSubtraction constants in dimensional regularization (DR)

$$\begin{aligned} G &= \frac{1}{16\pi^2} \left(\overleftarrow{\alpha} + Log \frac{m_1^2}{\mu^2} + \frac{m_2^2 - m_1^2 + s}{2s} Log \frac{m_2^2}{m_1^2} \right. \\ &+ \frac{p}{\sqrt{s}} \left(Log \frac{s - m_2^2 + m_1^2 + 2p\sqrt{s}}{-s + m_2^2 - m_1^2 + 2p\sqrt{s}} + Log \frac{s + m_2^2 - m_1^2 + 2p\sqrt{s}}{-s - m_2^2 + m_1^2 + 2p\sqrt{s}} \right) \end{aligned}$$

Cutoff values in cutoff method

$$G = \int_{0}^{q_{max}} \frac{q^2 dq}{(2\pi)^2} \frac{\omega_1 + \omega_2}{\omega_1 \omega_2 [(P^0)^2 - (\omega_1 + \omega_2)^2 + i\epsilon]}$$

Since we work with hadronic phenomena, one often uses a cutoff value of about 1 GeV to guide calculations in DR method.

Dynamically generated state

- To identify resonances, one goes to the complex plane to look for poles.
- Around the pole position, the amplitude can be approximated by

$$T_{ij} = \frac{g_i g_j}{s - s_{\text{pole}}},$$

$$M = {
m Re} \sqrt{s}_{
m pole}$$
 and $\Gamma = 2 imes {
m Im} \sqrt{s}_{
m pole}$

Dynamically generated states

>strangeness=0, isospin=0, and spin=2

	pole position (no two p's)	real axis (with two p's)
f ₂ (1270)	(1275, 2)	(1276, 97)
f' ₂ (1525)	(1525, 6)	(1525, 45)

Two subtraction constants slightly tuned to reproduce exactly the

masses!

>strangeness=0, isospin=0, and spin=0

	pole position (no two p's)	real axis (two p's)
f ₀ (1370)	(1512, 51)	(1523, 257)
f ₀ (1710)	(1726, 28)	(1721, 133)

Table: Branching ratios of the $f_0(1710)$ in comparison with data.

	Our model	PDG
$\Gamma(\pi\pi)/\Gamma(Kar{K})$	< 1%	<11% at 95% C.L.
$\Gamma(\eta\eta)/\Gamma(Kar{K})$	$\sim 50\%$	$(48\pm15)\%$

No tuning of the parameters, their positions are fixed by those of the f_2 states!

Dynamically generated states

Notation: (mass, width) in MeV

$I^G(J^{PC})$	Theory			PDG data		
	pole position	real	axis	name	mass	width
		$\Lambda_b = 1.4 { m GeV}$	$\Lambda_b = 1.5 \text{ GeV}$			
$0^+(0^{++})$	(1512, 51)	(1523, 257)	(1517, 396)	$f_0(1370)$	$1200 \sim 1500$	$200 \sim 500$
$0^+(0^{++})$	(1726, 28)	(1721, 133)	(1717, 151)	$f_0(1710)$	1724 ± 7	137 ± 8
$0^+(1^{++})$	(1802,78)	(180	(2,49)	f_1		
$0^+(2^{++})$	(1275,2)	(1276, 97)	(1275, 111)	$f_2(1270)$	1275.1 ± 1.2	$185.0^{+2.9}_{-2.4}$
$0^+(2^{++})$	(1525, 6)	(1525, 45)	(1525, 51)	$f_2'(1525)$	1525 ± 5	73^{+6}_{-5}
$1^{-}(0^{++})$	(1780, 133)	(1777.148)	(1777, 172)	a_0		
$1^+(1^{+-})$	(1679, 235)	(1703)	3,188)	b_1		
$1^{-}(2^{++})$	(1569, 32)	(1567, 47)	(1566, 51)	$a_2(1700)??$		
$1/2(0^+)$	(1643, 47)	(1639, 139)	(1637, 162)	K		
$1/2(1^+)$	(1737, 165)	(1743)	3,126)	$K_1(1650)?$		
$1/2(2^+)$	(1431,1)	(1431, 56)	(1431, 63)	$K_2^*(1430)$	1429 ± 1.4	104 ± 4

Effects of PP coupled channels

PHYSICAL REVIEW D 104, 114001 (2021)

Further study of $f_0(1710)$ with the coupled-channel approach and the hadron molecular picture

Zheng-Li Wang^{1,2,*} and Bing-Song Zou^{1,2,3,†}

¹CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China ²School of Physics, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China ³School of Physics and Electronics, Central South University, Changsha 410083, China

(Received 8 August 2021; accepted 12 November 2021; published 1 December 2021)

The $f_0(1710)$ was previously proposed to be a dynamically generated state with interactions between vector mesons. We extend the study of $f_0(1710)$ by including its coupling to channels of pseudoscalar mesons within the coupled-channel approach. The channels involved are $K^*\bar{K}^*$, $\rho\rho$, $\omega\omega$, $\phi\phi$, $\omega\phi$, $\pi\pi$, $K\bar{K}$, $\eta\eta$. We show that the pole assigned to $f_0(1710)$ does not change much. Then we calculate the partial decay widths of $f_0(1710) \rightarrow K^*\bar{K}^* \rightarrow \pi\pi$, $K\bar{K}$, $\eta\eta$ as the coupled channel dynamically generated state as well as assuming it to be a pure $K^*\bar{K}^*$ molecule. In both cases the ratios of partial decay widths agree fairly with that in PDG.

Other predictions for a₀(1710)

PHYSICAL REVIEW D 83, 016007 (2011)

Low-lying even-parity meson resonances and spin-flavor symmetry

C. García-Recio

Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain

L.S. Geng

School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China and Physik Department, Technische Universität München, D-85747 Garching, Germany

J. Nieves

Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Apartado 22085, E-46071 Valencia, Spain

L.L. Salcedo

Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain (Received 6 May 2010; published 20 January 2011)

$\sqrt{s_R}$	$\eta \pi$	ĒΚ	ωρ	ϕho	\bar{K}^*K^*
(991, -46)	2906	3831	775	4185	5541
(1442, -5)	907	285	10898	677	3117
(1760, -12)	790	1241	667	5962	5753

PHYSICAL REVIEW D 97, 034030 (2018)

Strong decays of the higher isovector scalar mesons

Guan-Ying Wang, Shi-Chen Xue, Guan-Nan Li, En Wang,^{*} and De-Min Li[†] Department of Physics, Zhengzhou University, Zhengzhou, Henan 450001, China

(Received 3 January 2018; published 27 February 2018)

TABLE IV. Decay widths of $a_0(2^3P_0)$ (in MeV). The initial state mass is set to be 1744 MeV.

Channel	Mode	$\Gamma_i(2^3P_0)$
$0^+ \to 0^- 0^-$	πη	7.91
	$\pi\eta'$	2.46
	$\pi\eta(1475)$	19.25
	$\pi\eta(1295)$	20.86
	$K\bar{K}$	1.07
$0^+ \rightarrow 0^- 1^+$	$\pi b_1(1235)$	213.08
	$\pi f_1(1285)$	38.54
	$\pi f_1(1420)$	1.02
$0^+ \rightarrow 1^- 1^-$	$ ho \omega$	59.96
Total	width	364.12

 $a_0(1710)$

BESIII measurements

 $\Box D_s^+ \to K_s^0 K_s^0 \pi^+$

BESIII: PRD105 (2022) 5, L051103

BESIII measurements

$$\Box D_s^+ \to K_s^0 K^+ \pi^0$$

BESIII: PRL129, 182001

 $\begin{aligned} M_{a_0(1710)} &= 1817 \pm 8 \pm 20 \text{ MeV}, \\ \Gamma_{a_0(1710)} &= 97 \pm 22 \pm 15 \text{ MeV}. \end{aligned}$

Too close to the boundary region!!!

Collaboration	$M_{a_0(1710)}$	$\Gamma_{a_0(1710)}$	Ref.
BABAR	$1704 \pm 5 \pm 2$	$110 \pm 15 \pm 11$	[8]
BESIII	$1723 \pm 11 \pm 2$	$140\pm14\pm4$	[9]
BESIII	$1817\pm8\pm20$	$97\pm22\pm15$	[10]

VV interactions

Two dynamical generated a_0 resonances by interactions between vector mesons

Zheng-Li Wang^{1,2,a}, Bing-Song Zou^{1,2,3,b}

(2022) 82:509 https://doi.org/10.1140/epjc/s10052-022-10460-4

Regular Article - Theoretical Physics

Eur. Phys. J. C

¹ CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China ² School of Physics, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China ³ School of Physics and Electronics, Central South University, Changsha 410083, China

THE EUROPEAN

PHYSICAL JOURNAL C

Check for updates

Received: 26 March 2022 / Accepted: 22 May 2022 © The Author(s) 2022

q _{max} (GeV)	0.9	1.0	1.1
Pole (GeV)	1.76 – 0.09 <i>i</i>	1.72 – 0.10 <i>i</i>	1.69 — 0.11 <i>i</i>

*a*₀(1817)

$\Box a_0(1817) \& X(1812) (J/\psi \to \gamma \phi \omega)$

D.Guo, PRD105(2022)114014

BESIII: Phys.Rev.Lett. 96 (2006) 162002, PRD87(2013)032008

Other studies

- > Z.Y. Wang, Y.W. Peng, J.Y Yi, W.C. Luo, C. W. Xiao, PRD107 (2023) 1116018
- > Oset-Dai-Geng, EPJC82 (2022) 3, 225, Sci.Bull. 68 (2023) 243
- DFour quark in MIT model
- ➢ N.N. Achasov, 2306.04478
- **D**Search for a0(1710)
- > Abreu-Wang-Oset, Eur.Phys.J.C 83 (2023) 3, 243
- > Ewang-JJXie-LSGeng, PRD108(2023)114004
- Xiao-Yun Wang, Hui-Fang Zhou, Xiang Liu, 2306.12815

 $J/\psi \to \phi K^+ K^- (K^0 \bar{K}^0)$

 $\eta_c \to \overline{K}{}^0 K^+ \pi^-$

Mechanism of the $D_s^+ \to K_S^0 K_S^0 \pi^+$

DWeakly decay

$$D_s^+ \to V_1[s\bar{d} \to s(\bar{u}u + \bar{d}d + \bar{s}s)\bar{d}](u\bar{s} \to K^{*+}),$$

$$D_s^+ \to V_2[u\bar{s} \to u(\bar{u}u + \bar{d}d + \bar{s}s)\bar{s}](\bar{d}s \to \bar{K}^{*0}),$$

$$\sum_{i=u,d,s} s\bar{q}_i q_i \bar{d} = M_{3i} M_{i2} = (M^2)_{32},$$

$$\sum_{i=u,d,s} u\bar{q}_i q_i \bar{s} = M_{1i} M_{i3} = (M^2)_{13},$$

$$M = \begin{pmatrix} u\bar{u} & u\bar{d} & u\bar{s} \\ d\bar{u} & d\bar{d} & d\bar{s} \\ s\bar{u} & s\bar{d} & s\bar{s} \end{pmatrix}.$$

Mechanism of the $D_s^+ \rightarrow K_S^0 K_S^0 \pi^+$

,

DWeakly decay+Hadronization

$$P = \begin{pmatrix} \frac{\eta}{\sqrt{3}} + \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta'}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{\eta}{\sqrt{3}} - \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta'}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}} + \frac{\sqrt{6}\eta'}{3} \end{pmatrix}$$

$$V = egin{pmatrix} rac{
ho^0}{\sqrt{2}} + rac{\omega}{\sqrt{2}} &
ho^+ & K^{*+} \
ho^- & -rac{
ho^0}{\sqrt{2}} + rac{\omega}{\sqrt{2}} & K^{*0} \ K^{*-} & ar{K}^{*0} & oldsymbol{\phi} \end{pmatrix}.$$

$$(M^{2})_{32} \to (V \cdot P)_{32} = \pi^{+} K^{*-} - \frac{1}{\sqrt{2}} \pi^{0} \bar{K}^{*0},$$
$$(M^{2})_{13} \to (P \cdot V)_{13} = \pi^{+} K^{*0} + \frac{1}{\sqrt{2}} \pi^{0} K^{*+},$$
$$D_{s}^{+} \to V_{1} \left(\pi^{+} K^{*-} K^{*+} - \frac{1}{\sqrt{2}} \pi^{0} \bar{K}^{*0} K^{*+} \right),$$
$$D_{s}^{+} \to V_{2} \left(\pi^{+} K^{*0} \bar{K}^{*0} + \frac{1}{\sqrt{2}} \pi^{0} K^{*+} \bar{K}^{*0} \right).$$

□Final state interaction

$$\begin{split} |K^{*0}\bar{K}^{*0}\rangle &= \frac{1}{\sqrt{2}} (|K^*\bar{K}^*, I=1\rangle - |K^*\bar{K}^*, I=0\rangle), \\ |K^{*+}K^{*-}\rangle &= -\frac{1}{\sqrt{2}} (|K^*\bar{K}^*, I=1\rangle + |K^*\overline{K^*}, I=0\rangle), \\ V_1K^{*+}K^{*-} + V_2K^{*0}\bar{K}^{*0} \\ &= -\frac{V_1}{\sqrt{2}} (|K^*\bar{K}^*, I=1\rangle + |K^*\bar{K}^*, I=0\rangle) \end{split}$$

$$+\frac{V_2}{\sqrt{2}}(|K^*\bar{K}^*,I=1\rangle-|K^*\bar{K}^*,I=0\rangle)$$

=
$$\frac{V_2-V_1}{\sqrt{2}}|K^*\bar{K}^*,I=1\rangle-\frac{V_2+V_1}{\sqrt{2}}|K^*\bar{K}^*,I=0\rangle.$$

$$\mathcal{M}_{a} = \frac{V_{2} - V_{1}}{4} \tilde{G}_{K^{*}\bar{K}^{*}} (M_{K^{0}_{S}K^{0}_{S}}) \\ \times \frac{g_{K^{*}\bar{K}^{*}}g_{K\bar{K}}}{M^{2}_{K^{0}_{S}K^{0}_{S}} - M^{2}_{a_{0}(1710)} + iM_{a_{0}(1710)}\Gamma_{a_{0}(1710)}},$$

Set	$M_{a_0(1710)}$	$\Gamma_{a_0(1710)}$	$g_{K^*\bar{K}^*}$	$\Gamma_{K\bar{K}}$
I (Refs. [13,15])	1777	148	(7525, -i1529)	36
II (Ref. [28])	1720	200	(8731, -i2200)	74

Mechanism of the $D_s^+ \to K_s^0 K_s^0 \pi^+$

□G function $\omega(\tilde{m}_1^2) = \frac{1}{N} \operatorname{Im} \left(\frac{1}{\tilde{m}_1^2 - m_{m_1}^2 + i\Gamma(\tilde{m}_1^2)\tilde{m}_1} \right)$ $G_{K^*\bar{K}^*}(M_{K^0_SK^0_S}) = \int_{m^2}^{m^2_+} \int_{m^2}^{m^2_+} d\tilde{m}_1^2 d\tilde{m}_2^2$ $N = \int_{\tilde{m}_{1}^{2}}^{\tilde{m}_{+}^{2}} d\tilde{m}_{1}^{2} \operatorname{Im}\left(\frac{1}{\tilde{m}_{1}^{2} - m_{\nu_{1}}^{2} + i\Gamma(\tilde{m}_{1}^{2})\tilde{m}_{1}}\right),$ $\times \omega(\tilde{m}_1^2)\omega(\tilde{m}_2^2)\tilde{G}(M_{K^0_cK^0_c},\tilde{m}_1^2,\tilde{m}_2^2),$ $\tilde{G} = \frac{1}{16\pi^2} \left\{ a_{\mu} + \ln \frac{m_1^2}{\mu^2} + \frac{m_2^2 - m_1^2 + s}{2s} \ln \frac{m_2^2}{m_1^2} \right\}$ 0.000 -0.005 $\times \frac{p}{\sqrt{s}} [\ln(s - (m_2^2 - m_1^2) + 2p\sqrt{s})]$ $\Gamma(\tilde{m}_1^2) = \Gamma_{K^*} \frac{k^3}{L^3},$ يند 2 -0.010 (G with K*-width) $+ \ln(s + (m_2^2 - m_1^2) + 2p\sqrt{s})$ Real part (G without K*-width) -0.015 - - Imaginary part (G without K*-width) $\tilde{k}=\frac{\lambda(\tilde{m}_1^2,m_\pi^2,m_K^2)}{2\tilde{m}},$ $-\ln(-s + (m_2^2 - m_1^2) + 2p\sqrt{s})$ -0.020 $-\ln(-s - (m_2^2 - m_1^2) + 2p\sqrt{s})]$ 1.2 1.8 1.0 1.4 1.6 $\mathsf{M}_{\mathsf{K}^0_*\mathsf{K}^0_*}\left(\mathsf{GeV}\right)$

Mechanism of the $D_s^+ \rightarrow K_S^0 K_S^0 \pi^+$

□The contribution of *K*^{*}

$$\begin{split} \mathcal{M}_{b} &= \frac{g_{D_{s}\bar{K}K^{*}}g_{K^{*}K\pi}}{2} \frac{1}{q^{2} - m_{K^{*+}}^{2} + im_{K^{*+}}\Gamma_{K^{*+}}} \\ &\times \left[(m_{K_{s}^{0}}^{2} - m_{\pi^{+}}^{2}) \left(1 - \frac{q^{2}}{m_{K^{*+}}^{2}} \right) \right. \\ &+ \left. + 2p_{1} \cdot p_{3} \frac{m_{\pi^{+}}^{2} - m_{K_{s}^{0}}^{2} - m_{K^{*+}}^{2}}{m_{K^{*+}}^{2}} \right. \\ &+ \left. + 2p_{2} \cdot p_{3} \frac{m_{\pi^{+}}^{2} - m_{K_{s}^{0}}^{2} + m_{K^{*+}}^{2}}{m_{K^{*+}}^{2}} \right] \\ &+ (\text{exchange term with } p_{2} \leftrightarrow p_{3}), \\ &\mathcal{M} = \mathcal{M}_{a} + \mathcal{M}_{b}, \\ \\ &\frac{d^{2}\Gamma}{dM_{K_{s}^{0}K_{s}^{0}}dM_{\pi K_{s}^{0}}} = \frac{M_{K_{s}^{0}K_{s}^{0}}M_{\pi K_{s}^{0}}}{128\pi^{3}m_{D_{s}^{+}}^{3}} (|\mathcal{M}_{a}|^{2} + |\mathcal{M}_{b}|^{2}), \end{split}$$

21

 $\Box D_s^+ \to K_S^0 K_S^0 \pi^+$

22

 $\Box D_s^+ \to K_S^0 K_S^0 \pi^+$

 $\Box D_s^+ \to K^+ K^- \pi^+$

BESIII: PRD104(2021)012016

 $\Box D_s^+ \to K_s^0 K^+ \pi^0$

 $\Box D_s^+ \to K_S^0 K^+ \pi^0$

 $\Box D_s^+ \to K_S^0 K^+ \pi^0$

 $a_0(1710)$ in $\eta_c \rightarrow KK\pi$

 $\Box \eta_c \rightarrow KK\pi$

 $V = \begin{pmatrix} \frac{\rho^0}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^+ & K^{*+} \\ \rho^- & -\frac{\rho^0}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix},$

$$<\!VVP > = (VV)_{12}P_{21} = \pi^{-} \sum_{i} V_{1i}V_{i2} = \pi^{-} \left[\rho^{+} \left(\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} \right) + \left(-\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} \right) \rho^{+} + \bar{K}^{*0}K^{*+} \right] = \pi^{-} \left[\sqrt{2}\rho^{+}\omega + \bar{K}^{*0}K^{*+} \right].$$
(3)

$$\mathcal{M}_{a} = V_{p} \times \left(G_{\bar{K}^{*0}K^{*+}} t_{\bar{K}^{*0}K^{*+} \to \bar{K}^{0}K^{+}} + \sqrt{2} G_{\omega\rho^{+}} t_{\omega\rho^{+} \to \bar{K}^{0}K^{+}} \right),$$

$$P = \begin{pmatrix} \frac{\eta}{\sqrt{3}} + \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta'}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{\eta}{\sqrt{3}} - \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta'}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}} + \frac{\sqrt{6}\eta'}{3} \end{pmatrix} \qquad G_{i}(M_{\bar{K}^{0}K^{+}}) = \int_{m_{1-}^{2}}^{m_{1+}^{2}} \int_{m_{2-}^{2}}^{m_{2+}^{2}} d\tilde{m}_{1}^{2} d\tilde{m}_{2}^{2} \times \qquad \qquad \omega(\tilde{m}_{i}^{2}) = \frac{1}{N} \text{Im} \left[\frac{1}{\tilde{m}_{i}^{2} - m_{V_{i}}^{2} + i\Gamma(\tilde{m}_{i}^{2})\tilde{m}_{i}} \right],$$

$$\omega(\tilde{m}_{1}^{2})\omega(\tilde{m}_{2}^{2})\tilde{G}(M_{\bar{K}^{0}K^{+}}, \tilde{m}_{1}^{2}, \tilde{m}_{2}^{2}), \qquad N = \int_{\tilde{m}_{i-}^{2}}^{\tilde{m}_{i+}^{2}} d\tilde{m}_{i}^{2} \text{Im} \left[\frac{1}{\tilde{m}_{i}^{2} - m_{V_{i}}^{2} + i\Gamma(\tilde{m}_{i}^{2})\tilde{m}_{i}} \right],$$

• $\overline{K}_{s}^{0}K^{\pm}$ invariant mass distribution

BABAR: PRD 93(2016)012005

Belle: PRD89(2014)112004

• $K^{\pm}\pi^{-}$ invariant mass distribution

LHCb measurements 2304.14891

 $a_0(1710)$ in J/ $\psi \rightarrow \overline{K}^0 K^+ \rho^-$

Reaction mechanism

34

$a_0(1710) \text{ in } J/\psi \rightarrow \overline{K}^0 K^+ \rho^-$

35

• $K_1(1270) \& a_0(980)$

$$\mathcal{M}_b = V'_p \times G_{K^+\rho^-} t_{K^+\rho^- \to K^+\rho^-},$$

$$t_{K^+\rho^- \to K^+\rho^-} = \frac{g_{K^+\rho^-}g_{K^+\rho^-}}{M_{K^+\rho^-}^2 - M_{K_1}^2 + iM_{K_1}\Gamma_{K_1}},$$

 J/ψ \bar{K}^{0} (a) K^{+} J/ψ \bar{K}^{0} K^{+} (b) \bar{K}^{0}

TABLE IV. Pole positions and coupling constants of the two poles of the $K_1(1270)$ [46]. All values are in units of MeV.

	First pole	Second pole
Pole position $\sqrt{s_0}$	1195 – <i>i</i> 123	1284 – <i>i</i> 73
9Kp	-1671 + i1599	4804 + i395

$$\begin{split} \mathcal{M}_{d} &= V_{p}' [1 + G_{K\bar{K}} t_{\bar{K}^{0}K^{+} \to \bar{K}^{0}K^{+}}], \\ T &= [1 - VG]^{-1} V, \\ V_{K\bar{K} \to K\bar{K}} &= -\frac{1}{4f^{2}} s, \\ V_{K\bar{K} \to \pi\eta} &= -\frac{1}{4f^{2}} s, \\ V_{K\bar{K} \to \pi\eta} &= \frac{\sqrt{6}}{12f^{2}} \left(3s - \frac{8}{3}m_{K}^{2} - \frac{1}{3}m_{\pi}^{2} - m_{\eta}^{2} \right), \\ V_{\pi\eta \to K\bar{K}} &= V_{K\bar{K} \to \pi\eta}, \\ V_{\pi\eta \to \pi\eta} &= -\frac{1}{3f^{2}}m_{\pi}^{2}, \end{split}$$

 $\mathcal{M} = \mathcal{M}_a + \mathcal{M}_b + \mathcal{M}_c + \mathcal{M}_d,$

$$\frac{d^2\Gamma}{dM_{\bar{K}^0K^+}dM_{K^+\rho^-}} = \frac{M_{\bar{K}^0K^+}M_{K^+\rho^-}}{128\pi^3m_{J/\psi}^3}|\mathcal{M}|^2,$$

$$\frac{d^2\Gamma}{dM_{\bar{K}^0K^+}dM_{\bar{K}^0\rho^-}} = \frac{M_{\bar{K}^0K^+}M_{\bar{K}^0\rho^-}}{128\pi^3m_{J/\psi}^3}|\mathcal{M}|^2.$$

PRD75(2007)01 4017

 $(10.09 \pm 0.04) \times 10^9 J/\psi$

STCF per year

 $3.4 \times 10^{12} J/\psi$

Front. Phys. 19, 14701 (2024).

- Our results are in good agreement with the BESIII measurements, which supports the $K^*\overline{K}^*$ molecule of $a_0(1710)$.
- The $a_0(1710)$ mass and width are crucial to understand its internal structure.
- Precise experimental measurements are necessary.

致谢: 国家自然科学基金重大项目课题 Thank you very much!

Tree level transition amplitudes

