

Measurement of the relative phase between strong and EM decays of charmonium

王**雅迪** 华北电力大学

(谨代表Phase测量工作小组)

https://indico.ihep.ac.cn/category/1060/

第八届R值与QCD强子结构研讨会

19/07/2024 - 22/07/2024

Outline

Theory for the phase between strong and EM

SU(3) dependent experimental evidences

Scan method (SU(3) independent) and measurement

Summary

Outline

Theory for the phase between strong and EM

SU(3) dependent experimental evidences

Scan method (SU(3) independent) and measurement

Summary

Theory for the phase between strong and EM

(a) $e^+e^- \rightarrow R(q\underline{q}) \rightarrow hadrons via strong$ mechanism; (b) $e^+e^- \rightarrow R(qq) \rightarrow hadrons via EM$ mechanism; pQCD regime: all are Real, phase between A_{3g} and A_{γ} should be 0° or 180° V.L. Chernyak and I.R. Zhinitsky, Nuclear Physics B 246, 52 (1998)

Theory for the phase between strong and EM

$$A_g^H = \sum_h \langle h | 3g \rangle \langle 3g | \psi \rangle$$

$$A_{\gamma}^{H} = \sum_{h} \langle h | \gamma \rangle \langle \gamma | h \rangle$$

Clearly,

$$A_g^{*H}A_\gamma^H = \langle \psi | 3g \rangle \langle 3g | (\sum_h |h\rangle \langle h|) | \gamma \rangle = 0$$
 is equivalent to

$$\langle 3g|\gamma\rangle = 0$$

Since $\sum_{h} |h\rangle \langle h| = 1$

Universality independent of final states or intermediate resonances.

For exclusive channels common to J/ψ and

 $\psi(2S)$, there cannot be significant

differences in relative abundances if the

three gluon intermediate state makes any physical sense.

J.-M. Gerard, J. Weyers, Phys. Lett. B 462, 324 (1999); P. Wang, C.Z. Yuan, X.H. Mo, Phys. Rev. D 69, 057502 (2004); M. Suzuki, Phys. Rev. D 58, 111504 (1998); etc.

Outline

Theory for the phase between strong and EM

SU(3) dependent experimental evidences

Scan method (SU(3) independent) and measurement

Model dependent experimental evidences $from J/\psi$ decays

SU3 and SU3 Breaking in $1^{-}0^{-[1,2,3,4]}$, $0^{-}0^{-[1,2,3]}$, $1^{-}1^{-[1]}$, $1^{+}0^{-[5]}$, $B\overline{B}^{[2,6,7]}$ decays show the phase in J/ψ decays between A_g and A_γ is $|\Phi| \sim 90^{\circ}$

- $PP(0^{-}0^{-})(\pi^{+}\pi^{-}, K^{+}K^{-}, K_{S}K_{L}): \Phi = (90 \pm 10)^{\circ 2}$
- $VP(1^-0^-)(\rho\pi,\omega\pi^0,\phi\pi^0,\rho\eta,\omega\eta,\phi\eta,\rho\eta',\omega\eta',\phi\eta',\overline{K}^*K)$
- $VP(1^+0^-)(K_1^{\pm}(1400)K^{\mp}, K_1^{\pm}(1270)K^{\mp})$
- $VV(1^-1^-)(\rho^+\rho^-, K^{*+}K^{*-}, K^{*0}\overline{K}^{*0})$
- $\circ B\overline{B}(p\overline{p}, n\overline{n}, \Lambda\overline{\Lambda}, \Sigma^{0}\overline{\Sigma}^{0}, \Sigma^{+}\overline{\Sigma}^{-}, \Xi^{0}\overline{\Xi}^{0}, \Xi^{+}\overline{\Xi}^{-}, \Sigma^{0}\overline{\Lambda} + \overline{\Sigma}^{0}\Lambda)$

Some are based on very old experimental results, but the conclusion keeps the same

Process J/ψ→ PV	SOZI amplitude	DOZI correction
ρ ⁺ π ⁻ , ρ ⁰ π ⁰ , ρ ⁻ π ⁺ K ⁺⁺ K ⁻ , K ⁺⁻ K ⁺ K ⁺⁰ K ⁰ , K ⁺⁰ K ⁰ ωη ωη φη φη φη ρη΄ ωπ ⁰ φπ ⁰	g + e $g(1 - s_g) + e$ $g(1 - s_g) - 2e$ $(g + e)X_{\eta}$ $[g(1 - 2s_g) - 2e]Y_{\eta}$ $[g(1 - 2s_g) - 2e]Y_{\eta}$ $[g(1 - 2s_g) - 2e]Y_{\eta}$ $3eX_{\eta}$ $3eX_{\eta}$ 3e 0	+ $\sqrt{2}rg(\sqrt{2}X_{\eta} + Y_{\eta})$ + $\sqrt{2}rg(\sqrt{2}X_{\eta'} + Y_{\eta'})$ + $rg(\sqrt{2}X_{\eta} + Y_{\eta})$ + $rg(\sqrt{2}X_{\eta'} + Y_{\eta'})$
An example	$g - A_{3g};$ $X_{\eta}, Y_{\eta}, s_g - SU(3)$	$e - A_{\gamma}$ breaking items

- [1] L. Köpke and N. Wermes, Phys. Rep. 174, 67 (1989)
- [2] G. Lopez Castro, J. L. Lucio M. and J. Pestieau, hepph/9902300v1 (1999)
- [3] Mahiko Suzuki, Physical Review D 57, 5717 (1998)
- [4] P. Wang, C.Z. Yuan, X.H. Mo, Phys. Rev. D 69, 057502 (2004)
- [5] Mahiko Suzuki, Physical Review D 63, 054021 (2001)
- [6] R. Baldini et al, Physics Letters B 444, 111-118 (1998)
- [7] K. Zhu et al., Int. J Mod. Phys. A30, 1550148 (2015).

Model dependent experimental evidences $from J/\psi$ decays

$$\begin{split} Br(J/\psi \to p\bar{p}) &= (2.112 \pm 0.004 \pm 0.031) \times 10^{-3} \\ \alpha &= 0.595 \pm 0.012 \pm 0.015 \\ Br(J/\psi \to n\bar{n}) &= (2.07 \pm 0.01 \pm 0.17) \times 10^{-3} \end{split}$$

 $\alpha = 0.50 \pm 0.04 \pm 0.21$

Study of
$$J/\psi \rightarrow p\bar{p}$$
 and $J/\psi \rightarrow n\bar{n}$
(BESIII Collaboration) Phys. Rev. D 86, 032014 (2012)

$$\phi = \cos^{-1} [(\mathcal{B}(J/\psi \to p\bar{p}) - S^2 - E_p^2)/(2SE_p)]$$

= (88.7 ± 8.1)°.

- ► $E_p(E_n)$ and *S* are EM and strong amplitudes of $J/\psi \rightarrow p\bar{p} (n\bar{n}), \phi$ is the phase angle between $E_p(E_n)$ and *S*.
- > Assumption:
 - $E_n = -E_p$ and $S_p = S_n = S$

The strong interaction is dominant. $\Phi = (-85.9 \pm 1.7)^{\circ}$ or $(+90.8 \pm 1.6)^{\circ}$ combined with other baryon decays from BES, MarkII, DMII, BESII, BESIII experiments. K. Zhu, X. H. Mo, C. Z. Yuan, Inter. J. Mod. Phys. A, 30, 1550148 (2015)

Model dependent experimental evidences

from J/ψ decays

- Consider the small contribution from $A_{gg\gamma}$
- Assume $A_{gg\gamma}$ has the same phase as A_g to A_γ
- Perform SU(3) analysis based on experimental branching ratios of J/ψ decaying to baryons

$$\Phi = (73 \pm 8)^{\circ}$$

Br result from SU(3) very close to PDG

Question of $e^+e^- \rightarrow \Sigma \overline{\Sigma}$

- An asymmetry in cross sections for Σ isospin triplets:
 9.7 ± 1.3 : 3.3 ± 0.7 : 1 =>related with valence quark?
- While, the branching ratios from J/ψ suggests opposite order in strong interaction

Process	Branching fraction	$lpha_{J/\psi}$
$J/\psi\to\Sigma^+\overline{\Sigma}{}^-$	$(1.027 \pm 0.005) \times 10^{-3}$	-0.508 ± 0.006
$J/\psi\to\Sigma^0\bar\Sigma^0$	$(1.17 \pm 0.03) \times 10^{-3}$	-0.45 ± 0.02
$J/\psi\to\Sigma^-\overline{\Sigma}{}^+$	$(1.51 \pm 0.06) \times 10^{-3}$	-0.36 ± 0.02

An analysis based on SU(3) and experimental branching ratio results gives the EM cross section at J/ψ :

R. B. Ferroli, A. Mangoni, S. Pacetti, K. Zhu, Physics Letters B 799 (2019) 135041

$$\Phi = (73 \pm 8)^{\circ}$$

$$\sigma(e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^-) = 10.4 \pm 1.1 \ pb$$

$$\sigma(e^+e^- \rightarrow \Sigma^0 \overline{\Sigma}^0) = 1.37 \pm 0.12 \ pb$$

$$\sigma(e^+e^- \rightarrow \Sigma^- \overline{\Sigma}^+) = 0.79 \pm 0.30 \ pb$$

Model dependent experimental evidences

from $\psi(2S)$ decays

11

From the analysis of BESIII data made by R. Baldini^[1]:

- $\psi(2S) \rightarrow VP \ (1^-0^-): \Phi = (159 \pm 12)^\circ$
- $\psi(2S) \rightarrow K^* K$ only: $\Phi = (159 \pm 24)^\circ$
- $\psi(2S) \rightarrow PP \ (0^-0^-): \ \Phi = (95 \pm 11)^\circ$

Analysis by Mahiko Suzuki^[2] with Babar data:

- $\psi(2S) \rightarrow 1^- 0^-$: tends to have large phase,
- $\psi(2S) \rightarrow 1^+ 0^-$: $\Phi \sim 0^\circ$
- Difference could be caused by lower statistics of Babar data than that of BESIII.

 $PP(0^{-}0^{-})$ mode from BES result^[3]:

- $\psi(2S) \rightarrow K_S K_L, K^+ K^-, \pi^+ \pi^-$:
- $\Phi = (-82 \pm 29)^\circ$ or $(121 \pm 27)^\circ$

Analysis^[4] of $\psi(2S)$ decaying to baryon pairs from CLEO and BESII:

- baryon pairs:
- $\Phi = (-98 \pm 25)^{\circ} \text{ or } (+134 \pm 25)^{\circ}$

The Φ change between J/ψ and $\psi(2S)$ is a puzzle, very likely related to $\rho\pi$ puzzle

[1] Rinaldo Baldini Ferroli, Orsay (France), 2014
[2] Mahiko Suzuki, Phys. Rev. D 63, 054021 (2000)
[3] BES Collaboration, Phys. Rev. Lett. 92, 052001 (2004)
[4] K. Zhu, X. H. Mo, C. Z. Yuan, Inter. J. Mod. Phys. A, 30, 1550148 (2015)

Model dependent experimental evidences

from $\psi(3770)$ decays

• From R. Baldini (Orsay (France), (2014)), $|\Phi| \sim 90^{\circ}$

decay	continuum	Ψ"(3770)	sign	
ρ π	13.1±2.8	7.4±1.3	-	CLEOc, PRD 73(2006)012002
φη	2.1±1.6	4.5±0.7	+	CLEOc, PRD 73(2006)012002
рр	0.74±0.08	0.4±0.02	-	BESIII Y.Liang, Nov (2012)

- From P. Wang (arxiv:hep/0410028v2 (2004)),
 - Φ holds -90° in OZI suppressed decays of $\psi(3770)$.
 - From the $\rho\pi$ cross section measurement at $\psi(3770)$ and 3.67 GeV, $\rho\pi$ production is suppressed possibly by interference.

Outline

Theory for the phase between strong and EM

SU(3) dependent experimental evidences

Scan method (SU(3) independent) and measurement

Summary

SU(3) independent--Scan method

• The full interference between A_{γ} and A_{cont} has been observed at SLC (1975), BESII (1995) and KDER (2010). ($\Phi_{\gamma,cont.} = 0^{\circ}$)

Model dependent experimental evidences $from \phi decays$

The interference between ϕ and $\omega(\omega')$ was observed at SND.

 $\succ e^+e^- \rightarrow \phi \rightarrow \pi^+\pi^-\pi^0$:

 A_{γ} is dominate

$$\succ e^+e^- \rightarrow \omega(\omega') \rightarrow \pi^+\pi^-\pi^0$$
:

 A_{3g} is dominate

$$\blacktriangleright \Phi_{\phi-\omega(\omega')} \sim \Phi_{g,\gamma}$$

• $\Phi_{\phi-\omega(\omega')} \sim 180^{\circ}$

[1] SND coll., Phys. Rev. D 63, 072002 (2001)

BESIII datasets

QNP2024

16

- The born cross section: $\sigma^{0}(W) = \left(\frac{A}{W^{2}}\right)^{2} \frac{4\pi\alpha^{2}}{W^{2}} \left|1 + \frac{3W^{2}\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}(1 + Ce^{i\Phi_{g,EM}})}{\alpha M(W^{2} M^{2} + iM\Gamma)}\right|^{2}$
- The observed cross section:

$$\sigma^{\text{theory}}(W) = \int_{W-nS_E}^{W+nS_E} GS(W - W'') dW'' \int_0^{x_f} dx F(x,s) \sigma^0(s(1-x))$$

Minimization method:
$$\chi^2 = \sum_{i=1}^{16} \frac{\left[\sigma_i^{\text{obs}} - f\sigma''(W_i)\right]^2}{(\Delta\sigma_i^{\text{obs}})^2 + \left[\Delta W_i \cdot \frac{d\sigma''(W)}{dW}\right]^2} + \left(\frac{1-f}{\Delta f}\right)^2$$

 Analytical formula was developed to reduce two integrations to one, arXiv:<u>2311.13292</u>

[1] F. Z. Chen, P. Wang, J. Wu, Y. Zhu, Chin. Phys. C 14, 585 (1990).
[2] X.Y. Zhou, Y.D. Wang, L.G. Xia, Chin. Phys. C 41 083001 (2017)

Prediction for line-shapes of $\psi(3686)$

- For narrow resonances, the beam energy spread is much larger than the natural width.
- The observed cross section and Born cross section are very different.

Prediction for line-shapes of $\psi(3770)$

- For wide resonances, the beam energy spread is smaller than the natural width.
- The observed cross section and Born cross section are very similar.

Scan method and measurement $e^+e^- \rightarrow J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$

BESIII Collaboration, Phys. Lett. B 791, 375 (2019)

- J/ψ scan data (16 data points) of 100 pb^{-1} collected in 2012 is used
- Detection efficiency is simulated with MCGPJ generator for the ISR effect around J/ψ narrow peak
- Intermediate resonances are considered in simulation without interference

	$\Phi_{g,\mathrm{EM}}$	$\mathcal{B}_{5\pi}$ (%)
Solution I	$(84.9\pm3.6)^\circ$	4.73 ± 0.44
Solution II	$(-84.7 \pm 3.1)^{\circ}$	4.85 ± 0.45

The phase between A_{γ} and A_{3a} is found being consistent with 90°.

Once again, the phase between A_{γ} and $A_{cont.}$ is confirmed to be ZERO.

BESIII Collaboration, to be submitted

$e^+e^- ightarrow J/\psi ightarrow \phi\eta$

➤ Two solutions
 ➤ Indistinguishable within 1σ confidence
 ➤ Φ_{3g,γ} ∈ [133.1°, 229.2°]

Interference between A_{3g} and A_{γ} ?

BESIII Collaboration, Phys. Lett. B 735, 101 (2014)

Even the interference is between A_{con} and A_{ψ} , the phase $\Phi_{3g,\gamma}$ is still close to -90° since A_g is much larger than A_{γ}

 $e^+e^- \rightarrow \psi(3770) \rightarrow p\overline{p}$

BESIII Collaboration, Phys. Rev. Lett. 132, 131901 (2024)

$e^+e^- \rightarrow \psi(3770) \rightarrow K_S K_L$

$$\sigma^{\text{dressed}} = \left| BW \cdot e^{i\phi} + \frac{a}{(\sqrt{s})^n} \cdot \sqrt{\Phi(\sqrt{s})} \right|^2$$

$$BW = \frac{\sqrt{12\pi\Gamma_{ee}\Gamma B}}{s - M^2 + iM\Gamma} \sqrt{\frac{\Phi(s)}{\Phi(M)}}, \ \Phi(s) = \frac{q^3}{s}$$

- $\mathcal{B} = (2.63^{+1.40}_{-1.59}) \times 10^{-5} \text{ and } \phi = (-0.39^{+0.05}_{-0.10})\pi$ within 1σ likelihood contour.
- Significance of $\psi(3770)$ resonance contribution determined to be 10σ .
- First observe the charmless decay $\psi(3770) \rightarrow K_S K_L$.

Phase in OZI allowed decays

Hadronic cross section of *e*+*e*- annihilation at bottomonium energy region X. K. Dong, X. H. Mo, P. Wang, C. Z. Yuan, Chin. Phys. C 44 (2020) 083001

- The phase between strong and EM interactions has been studied in OZI suppressed processes.
- In QCD these are described by three gluon annihilation.
- What happens to those strong decays which are not OZI suppressed?
- In Dong's work, a dip at 10.75 GeV on the Born order cross section of $e^+e^- \rightarrow b\overline{b}$

- BELLE observed a new structure near 10.75 GeV in the energy dependence of the e⁺e⁻ → Y(nS)π⁺π⁻ (n = 1,2,3) cross sections,
- This indicates that the dip is very probably due to the destructive interference between Y resonance and the continuum amplitude, as what we have seen in $\psi(3770)$.

ONP2024

• The phase measurement is needed for new resonance discovery.

Outline

Theory for the phase between strong and EM

SU(3) dependent experimental evidences

Scan method (SU(3) independent) and measurement

Summary

Summary

□ The phase between strong and EM can be measured with SU(3) dependent method and scan method.

Critical problems about the phase is a mystery:

- Is the phase universal? Independent of initial or final state?
- What is the sign of the phase?

□ More experimental results are needed for a physical conclusion.

Direct scanned experimental result in J/ψ and $\psi(3770)$ are shown, more results for J/ψ , $\psi(2S)$, $\psi(3770)$ will come.

□ Input from theorists is highly welcome!

Thanks for your attention!

Model dependent experimental evidences

Study of $J/\psi \rightarrow p\bar{p}$ and $J/\psi \rightarrow n\bar{n}$ (BESIII Collaboration) Phys. Rev. D 86, 032014 (2012)

►
$$Br(J/\psi \to p\bar{p}) = (2.112 \pm 0.004 \pm 0.031) \times 10^{-3}$$

 \succ α = 0.595 ± 0.012 ± 0.015

►
$$Br(J/\psi \to n\bar{n}) = (2.07 \pm 0.01 \pm 0.17) \times 10^{-3}$$

 $\succ \alpha = 0.50 \pm 0.04 \pm 0.21$

Observation of $\psi(3686) \rightarrow n\bar{n}$ and improved measurement of $\psi(3686) \rightarrow p\bar{p}$ (BESIII Collaboration) Phys. Rev. D 98, 032006 (2018)

► $Br(\psi(3686) \rightarrow n\bar{n}) = (3.06 \pm 0.06 \pm 0.14) \times 10^{-4}$

 $\succ \alpha_{n\bar{n}} = 0.68 \pm 0.12 \pm 0.11$

 \succ Br(ψ(3686) → pp̄) = (3.05 ± 0.20 ± 0.12) × 10⁻⁴

 $\succ \alpha_{p\bar{p}} = 1.03 \pm 0.06 \pm 0.03$

- The α values are very close in two decay modes, which is expected if the strong interaction is dominant in $J/\psi \rightarrow N\overline{N}$ decay and the relative phase of between the strong and electromagnetic amplitudes is close to 90°
- In contrast, in $\psi(3686)$ decays, the branching fractions are quite close between the two decay modes, but the α values are not, which may imply a more complex mechanism in the decay of $\psi(3686) \rightarrow N\overline{N}$. It makes a similar and straight forward extraction of the phase angle impossible in the decay of $\psi(3686) \rightarrow N\overline{N}$, and further studies are deserved.