应用QCD求和规则研究四夸克态的性质

王志刚

华北电力大学(保定)数理系

保定 071003 zgwang@aliyun.com

报告提纲

- 引言
- QCD求和规则一般计算步骤
- QCD求和规则中参数的选取
- 散射态的贡献, 求和规则可信度问题
- 双夸克-反双夸克型四夸克态质量谱的计算
- 色单态-色单态型四夸克态质量谱的计算
- 总结

1 引言

自2003年, Belle数据组在 $B \to XK$, $X(3872) \to J/\psi\pi^+\pi^-$ 衰变中发现X(3872)以来, 世界各大数据组陆续发现了许多类粲介子。

粗略地说,对现有的类粲介子大概有五种解释: 1.反色三重态-色三重态型四夸克态(即双夸克-反 双夸克型四夸克态)

2. 色单态-色单态型四夸克态(分子态) 🗸

3. 阈值效应, 散射效应, Cusp效应

4. 混杂态 🗸

5. 强子粲偶素(即 $c\bar{c}q\bar{q}$ 型四夸克态) $\sqrt{}$.

内容丰富的综述

H.X.Chen et al, Phys.Rept.639(2016)1. R.F.Lebed et al, Prog.Part.Nucl.Phys.93(2017)143. A.Esposito et al, Phys.Rept.668(2017)1. F.K.Guo et al, Rev.Mod.Phys.90(2018)015004. A.Ali et al, Prog.Part.Nucl.Phys.97(2017)123. S.L.Olsen et al, Rev.Mod.Phys.90(2018)015003. R.M.Albuquerque et al, J.Phys.**G46**(2019)093002. Y.R.Liu et al, Prog.Part.Nucl.Phys.107(2019)237. N.Brambilla et al, Phys.Rept.873(2020)1. M.Z.Liu et al, arXiv:2404.06399[hep-ph]

2 QCD求和规则一般计算步骤

 双夸克-反双夸克型四夸克态。从夸克出发, 可以构造标量、赝标、矢量、轴矢、张量双夸克 算符,进而构造四夸克流,来研究四夸克态。

 $\varepsilon^{ijk}q_j^T C\Gamma q'_k$, where $C\Gamma = C\gamma_5$, C, $C\gamma_\mu\gamma_5$, $C\gamma_\mu$ and $C\sigma_{\mu\nu}$ (or $C\sigma_{\mu\nu}\gamma_5$) for the scalar (S), pseudoscalar (P), vector (V), axialvector (A) and tensor (T) diquarks, respectively, the i, j, k are color indexes.

The tensor diquarks have both $J^P = 1^+$ and 1^- components, we project out them explicitly, and denote the corresponding $J^P = 1^+$ and 1^- diquarks as \widetilde{A} and \widetilde{V} , respectively.

•四夸克态-流对应关系: Phys.Rev. D102 (2020) 014018

Z_c	J^{PC}	Currents
$[uc]_S[\overline{dc}]_S$	0^{++}	$J_{SS}(x)$
$[uc]_A[\overline{dc}]_A$	0^{++}	$J_{AA}(x)$
$[uc]_{ ilde{A}}[\overline{dc}]_{ ilde{A}}$	0^{++}	$J_{\widetilde{A}\widetilde{A}}(x)$
$[uc]_V[\overline{dc}]_V$	0^{++}	$J_{VV}(x)$
$[uc]_{ ilde{V}}[\overline{dc}]_{ ilde{V}}$	0^{++}	$J_{\widetilde{V}\widetilde{V}}(x)$
$[uc]_P[\overline{dc}]_P$	0^{++}	$J_{PP}(x)$
$[uc]_S[\overline{dc}]_A - [uc]_A[\overline{dc}]_S$	1^{+-}	$J^{SA}_{-,\mu}(x)$
$[uc]_A[\overline{dc}]_A$	1^{+-}	$J_{-,\mu\nu}^{AA}(x)$
$[uc]_S[\overline{dc}]_{\widetilde{A}} - [uc]_{\widetilde{A}}[\overline{dc}]_S$	1^{+-}	$J^{S\widetilde{A}}_{-,\mu u}(x)$
$[uc]_{\widetilde{A}}[\overline{dc}]_A - [uc]_A[\overline{dc}]_{\widetilde{A}}$	1^{+-}	$J^{AA}_{-,\mu}(x)$
$[uc]_{\widetilde{V}}[\overline{dc}]_V + [uc]_V[\overline{dc}]_{\widetilde{V}}$	1^{+-}	$J_{-,\mu}^{\widetilde{V}V}(x)$
$[uc]_V [\overline{dc}]_V$	1^{+-}	$J^{V\ddot{V}}_{-,\mu\nu}(x)$
$[uc]_P[\overline{dc}]_V + [uc]_V[\overline{dc}]_P$	1^{+-}	$J^{PV}_{-,\mu}(x)$
$[uc]_S[\overline{dc}]_A + [uc]_A[\overline{dc}]_S$	1^{++}	$J^{SA}_{+,\mu}(x)$
$[uc]_S[\overline{dc}]_{\widetilde{A}} + [uc]_{\widetilde{A}}[\overline{dc}]_S$	1^{++}	$J^{SA}_{+,\mu\nu}(x)$
$[uc]_{\widetilde{V}}[\overline{dc}]_V - [uc]_V[\overline{dc}]_{\widetilde{V}}$	1^{++}	$J^{VV}_{+,\mu}(x)$
$[uc]_{\widetilde{A}}[\overline{dc}]_A + [uc]_A[\overline{dc}]_{\widetilde{A}}$	1^{++}	$J_{+,\mu}^{\widetilde{A}A}(x)$
$[uc]_P[\overline{dc}]_V - [uc]_V[\overline{dc}]_P$	1^{++}	$J^{PV}_{+,\mu}(x)$
$[uc]_A[\overline{dc}]_A$	2^{++}	$J_{+,\mu\nu}^{AA}(x)$
$[uc]_V[\overline{dc}]_V$	2^{++}	$J^{VV}_{+,\mu\nu}(x)$

2. 色单态-色单态型四夸克态。从夸克出发,可以构造标量、赝标、矢量、轴矢、张量色单态算符,进而构造四夸克流,研究四夸克态。

 $\bar{q}\Gamma q'$, where $\Gamma = 1$, $i\gamma_5$, γ_μ , $\gamma_\mu\gamma_5$ and $\sigma_{\mu\nu}$ 对于色单态-色单态型的隐粲四夸克流, 一般形式: $\bar{q}(x)\Gamma c(x)\bar{c}(x)\Gamma'q'(x)$

关联函数

对于隐粲(或隐美或双重)四夸克流J(x),

$$\Pi(p^2) = i \int d^4x e^{ip \cdot x} \langle 0|T\left\{J(x)J^{\dagger}(0)\right\}|0\rangle, \quad (1)$$

做维克收缩,得到四个完全传播子,两个重夸克 传播子,两个轻夸克传播子。如果每个重夸克传 播子贡献一个胶子,每个轻夸克传播子贡献一个 夸克对,则得到一个维度为10的算符,所以算符 乘积展开应该到维度为10的真空凝聚。 完成算符乘积展开后,通过色散关系,得到夸克 胶子层次上的谱密度。

$$\Pi(p^2) = \frac{1}{\pi} \int_{4m_Q^2}^{s_0} ds \frac{\mathrm{Im}\Pi(s)}{s - p^2} + \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{\mathrm{Im}\Pi(s)}{s - p^2}, (2)$$

*S*₀为连续态阈值参数,第一项为基态贡献,第二 项为连续态与激发态的贡献。

最高维凝聚,对四夸克态来说,即维度为10的凝 聚,对基态的贡献大约为1%左右。

基态贡献,即极点项贡献,大约(40-60)%,中心 值大于50%。这就是极点为主。

在强子层次, 关联函数照样可以写成:

$$\Pi(p^{2}) = \frac{1}{\pi} \int_{4m_{Q}^{2}}^{s_{0}} ds \frac{\text{Im}\Pi_{H}(s)}{s - p^{2}} + \frac{1}{\pi} \int_{s_{0}}^{\infty} ds \frac{\text{Im}\Pi_{H}(s)}{s - p^{2}},$$

$$= \frac{\lambda_{Z}^{2}}{M_{Z}^{2} - p^{2}} + \frac{1}{\pi} \int_{s_{0}}^{\infty} ds \frac{\text{Im}\Pi_{H}(s)}{s - p^{2}}$$
(3)

where $\langle 0|J(0)|Z_c(p)\rangle = \lambda_Z$. 完成强子-夸克对偶:

$$rac{\lambda_Z^2}{M_Z^2 - p^2} = rac{1}{\pi} \int_{4m_Q^2}^{s_0} ds rac{{
m Im}\Pi(s)}{s - p^2} \,.$$

(4)

做布莱尔变换:

$$\lambda_Z^2 \exp\left(-\frac{M_Z^2}{T^2}\right) = \int_{4m_Q^2}^{s_0} ds \frac{\mathrm{Im}\Pi(s)}{\pi} \exp\left(-\frac{s}{T^2}\right)$$
(5)

消去极点留数:

$$M_Z^2 = -\frac{\frac{d}{d\tau} \int_{4m_Q^2}^{s_0} ds \mathrm{Im}\Pi(s) \exp\left(-s\tau\right)}{\int_{4m_Q^2}^{s_0} ds \mathrm{Im}\Pi(s) \exp\left(-s\tau\right)} \Big|_{\tau = \frac{1}{T^2}} .$$
 (6)

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qu

3 QCD求和规则中参数的选取

The correlation functions $\Pi(p^2)$ do not depend on the energy scale $\mu,$ that is

$$\frac{d}{d\mu}\Pi(p^2) = 0, \qquad (7)$$

但并不能保证基态贡献不依赖能标, $ho_{QCD}(s,\mu) = rac{\mathrm{Im}\Pi(s)}{\pi}$,

$$\frac{d}{d\mu} \int_{4m_Q^2(\mu)}^{s_0} ds \frac{\rho_{QCD}(s,\mu)}{s-p^2} \to 0,$$
 (8)

due to the following two reasons inherited from the QCD sum rules:

• 微扰修正项被略去,高维真空凝聚因子化为低维真空凝聚,高 维真空凝聚的能标依赖性被修正了; • 引入截断 S_0 ,阈值 $4m_Q^2(\mu)$ 和连续态阈值 S_0 之间的关联是未知 的,强子-夸克对偶只是一个假设。 我们得不到不依赖于能标的QCD求和规则,但我们有一个经验的 能标公式,可以协调地把QCD谱密度的能标定下来。 We perform the Borel transformation with respect to the variable $P^2 = -p^2$ and obtain

$$\int_{4m_Q^2(\mu)}^{s_0} ds \frac{\rho_{QCD}(s,\mu)}{s-p^2} \to \int_{4m_Q^2(\mu)}^{s_0} ds \frac{\rho_{QCD}(s,\mu)}{T^2} \exp\left(-\frac{s}{T^2}\right) \,. \tag{9}$$

Now the QCD sum rules have two typical energy scales μ^2 and T^2 , where the T^2 is the Borel parameter. The integrals in Eq.(9) are sensitive to the heavy quark masses m_Q .

重夸克质量的变化,或者说能标的变化,可以引起积分区 间 $4m_Q^2(\mu) - s_0$ 和QCD谱密度 $\rho_{QCD}(s,\mu)$ 的变化,这也就引起 布莱尔窗口的变化,并由此产生强子质量和极点留数的变化。具 体的计算表明:微小的重夸克质量 m_Q 变化,可以起比较大强子质量变化。

从上面的分析,我们可以得出结论:能标的选取很重要,对结果 影响很大。 我们采用双势阱模型来描述四夸克系统 $q\bar{q}'Q\bar{Q}$ 。 在四夸克系统 $q\bar{q}'Q\bar{Q}$ 中,重夸克Q作为一个静态的势阱,吸引轻夸克q形成反 色三重态的双夸克态 \mathcal{D}^i_{aQ} ,

$$q + Q \rightarrow \mathcal{D}^i_{qQ},$$
 (10)

或者吸引轻夸克 \bar{q}' 形成色单态或者色八重态,

 $\bar{q}' + Q \rightarrow \bar{q}' Q \ (\bar{q}' \lambda^a Q) \,.$ (11)

重夸克 $<math>\overline{Q}$ 作为另外一个静态势阱,吸引轻夸克 \overline{q}' 形成色三重态的 双夸克态 $\mathcal{D}^i_{\overline{q}'\overline{Q}}$,

$$\bar{q}' + \bar{Q} \rightarrow \mathcal{D}^i_{\bar{q}'\bar{Q}},$$
 (12)

或者吸引轻夸克q. 形成色单态或者色八重态.

$$q + \bar{Q} \rightarrow \bar{Q}q \ (\bar{Q}\lambda^a q),$$
 (13)

where the *i* is color index, the λ^a is Gell-Mann matrix.

Then

 $\mathcal{D}^{i}_{qQ} + \mathcal{D}^{i}_{\bar{q}'\bar{Q}} \to \bar{3}3 - \text{type tetraquark states},$ $\bar{q}'Q + \bar{Q}q \to 11 - \text{type tetraquark states},$ $\bar{q}'\lambda^{a}Q + \bar{Q}\lambda^{a}q \to 88 - \text{type tetraquark states},$ (14)

the two heavy quarks Q and \overline{Q} stabilize the four-quark systems $q\overline{q}'Q\overline{Q}$.

这也就导致了隐粲和隐美四夸克态的QCD求和规则,可以同时满 足极点为主和算符乘积展开收敛。

The heavy four-quark systems are characterized by the effective heavy quark masses \mathbb{M}_Q (or constituent quark masses) and the virtuality $V = \sqrt{M_{X/Y/Z}^2 - (2\mathbb{M}_Q)^2}$, where the X/Y/Z denote the four-quark systems $q\bar{q}'Q\bar{Q}$.

四夸克态 $Q\bar{Q}q'\bar{q}$ 的QCD求和规则有三个特征能标: μ^2 , T^2 , V^2 .

我们很自然地取

$$\mu^2 = V^2 = M_{X/Y/Z}^2 - (2\mathbb{M}_Q)^2 = \mathcal{O}(T^2)$$
. (15)

我们首次研究了四夸克态 $q\bar{q}'QQ$ 的QCD求和规则 的能标依赖性, 发现能标公式Eq.(15)适用于所 有四夸克系统 $q\bar{q}'Q\bar{Q}$ 与五夸克系统 $qq'q''Q\bar{Q}$ 。 我们把所有夸克质量和真空凝聚演化到这个特 定的能标 μ , 然后提取强子质量 $M_{X/Y/Z}$ 和极点留 数。或者说 μ 和 $M_{X/Y/Z}$ 满足一个特定的关系,

参数 M_O 是一定的,对所有过程适用。

The vacuum condensates are taken to be the standard values $\langle \bar{q}q \rangle = -(0.24 \pm 0.01 \,\text{GeV})^3$, $\langle \bar{s}s \rangle = (0.8 \pm 0.1) \langle \bar{q}q \rangle$, $\langle \bar{q}g_s \sigma Gq \rangle = m_0^2 \langle \bar{q}q \rangle$, $\langle \bar{s}g_s \sigma Gs \rangle = m_0^2 \langle \bar{s}s \rangle$, $m_0^2 = (0.8 \pm 0.1) \,\text{GeV}^2$, $\langle \frac{\alpha_s GG}{\pi} \rangle = (0.33 \,\text{GeV})^4$ at the energy scale $\mu = 1 \,\text{GeV}$. 并考虑随能标的演化:

$$\langle \bar{q}q \rangle(\mu) = \langle \bar{q}q \rangle(1 \text{GeV}) \left[\frac{\alpha_s (1 \text{GeV})}{\alpha_s(\mu)} \right]^{\frac{12}{33-2n_f}},$$

$$\langle \bar{s}s \rangle(\mu) = \langle \bar{s}s \rangle(1 \text{GeV}) \left[\frac{\alpha_s (1 \text{GeV})}{\alpha_s(\mu)} \right]^{\frac{12}{33-2n_f}},$$

$$\langle \bar{q}g_s \sigma Gq \rangle(\mu) = \langle \bar{q}g_s \sigma Gq \rangle(1 \text{GeV}) \left[\frac{\alpha_s (1 \text{GeV})}{\alpha_s(\mu)} \right]^{\frac{2}{33-2n_f}},$$

$$\langle \bar{s}g_s \sigma Gs \rangle(\mu) = \langle \bar{s}g_s \sigma Gs \rangle(1 \text{GeV}) \left[\frac{\alpha_s (1 \text{GeV})}{\alpha_s(\mu)} \right]^{\frac{2}{33-2n_f}}, \quad (16)$$

We take the \overline{MS} masses $\underline{m_c(m_c)} = (1.275 \pm 0.025) \text{ GeV}$, $\underline{m_b(m_b)} = (4.18 \pm 0.03) \text{ GeV}$ and $\underline{m_s(\mu = 2 \text{ GeV})} = (0.095 \pm 0.005) \text{ GeV}$ from the Particle Data Group, and take into account the energy-scale dependence of the \overline{MS} masses from the renormalization group equation,

$$m_{Q}(\mu) = m_{Q}(m_{Q}) \left[\frac{\alpha_{s}(\mu)}{\alpha_{s}(m_{Q})} \right]^{\frac{12}{33-2n_{f}}},$$

$$m_{s}(\mu) = m_{s}(2\text{GeV}) \left[\frac{\alpha_{s}(\mu)}{\alpha_{s}(2\text{GeV})} \right]^{\frac{12}{33-2n_{f}}},$$

$$\alpha_{s}(\mu) = \frac{1}{b_{0}t} \left[1 - \frac{b_{1}\log t}{b_{0}^{2}} + \frac{b_{1}^{2}(\log^{2}t - \log t - 1) + b_{0}b_{2}}{b_{0}^{4}t^{2}} \right]. \quad (17)$$

4 双粒子散射态的贡献, QCD求 和规则的可信度问题

举例说明: 色单态-色单态型四夸克轴矢流 $J_{\mu}(x)$,

 $J_{\mu}(x) = \frac{1}{\sqrt{2}} \Big[\bar{u}(x)i\gamma_5 c(x)\bar{c}(x)\gamma_{\mu}d(x) + \bar{u}(x)\gamma_{\mu}c(x)\bar{c}(x)i\gamma_5 d(x) \Big] (18)$

可以进行玻色化, 在强子层次, 写成如下形式:

$$J_{\mu}(x) = \frac{1}{\sqrt{2}} \frac{f_D m_D^2}{m_c} f_{D^*} m_{D^*} \left[D^0(x) D_{\mu}^{*-}(x) + D_{\mu}^{*0}(x) D^-(x) \right] + \frac{1}{\sqrt{2}} \frac{f_D m_D^2}{m_c} f_{D_0} \left[D^0(x) i \partial_{\mu} D_0^-(x) + i \partial_{\mu} D_0^0(x) D^-(x) \right] + \lambda_Z Z_{c,\mu}(x) + \cdots,$$
(19)

从中可以看出, $J_{\mu}(x)$ 不光与轴矢四夸克态 Z_c 有耦合,而且与介子 对也有耦合。 具体计算表明,在强子层次,介子对的贡献,可以等效为对 Z_c 贡献一个有限的宽度,这个有限宽度的效应,可以吸收进极点留数 λ_Z 里面,而不影响质量。

取两个极限:单纯介子对的贡献,不能满足求和规则;单纯 四夸克态的贡献,可以满足求和规则。(Phys.Rev. D101 (2020) 074011)

深层次原因(arXiv:2102.07520),无论介子还是多夸克态,都有 平均半径 $\langle r \rangle$ 。我们用定域流 $J_{\mu}(x)$,四个价夸克处于同一空间位 置,形不成介子对,但四个价夸克作为一个整体,可以与 Z_c 有耦 合。进行玻色化时,

$$J_{\mu}(x) = \frac{1}{\sqrt{2}} \frac{f_D m_D^2}{m_c} f_{D^*} m_{D^*} \left[D^0(x) D_{\mu}^{*-}(x) + D_{\mu}^{*0}(x) D^-(x) \right] (\times) + \frac{1}{\sqrt{2}} \frac{f_D m_D^2}{m_c} f_{D_0} \left[D^0(x) i \partial_{\mu} D_0^-(x) + i \partial_{\mu} D_0^0(x) D^-(x) \right] (\times) + \lambda_Z Z_{c,\mu}(x) (\sqrt{)} + \cdots$$
(20)

5 QCD求和规则对双夸克-反双 夸克型四夸克态质量谱的计算

首先给出夸克结构、J^{PC}、布莱尔参数、QCD谱 密度能标(满足能标公式)、阈值参数、极点贡 献、最高维凝聚贡献

其次给出质量的理论值以及对现有X、Y、Z粒子 的可能确认。还有实验检验。

• Phys.Rev.D102(2020)014018(基态粒子)

$Z_c(X_c)$	J^{PC}	$T^2(\text{GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	μ (GeV)	pole	D(10)
$[uc]_S[\overline{dc}]_S$	0++	2.7 - 3.1	4.40 ± 0.10	1.3	(40 - 63)%	< 1%
$[uc]_A[\overline{dc}]_A$	0++	2.8 - 3.2	4.52 ± 0.10	1.5	(40 - 63)%	$\leq 1\%$
$[uc]_{ ilde{A}}[\overline{dc}]_{ ilde{A}}$	0++	3.1 - 3.5	4.55 ± 0.10	1.6	(42 - 62)%	< 1%
$[uc]_V [\overline{dc}]_V$	0++	3.7 - 4.1	5.22 ± 0.10	2.9	(41 - 60)%	$\ll 1\%$
$[uc]_{ ilde{V}}[\overline{dc}]_{ ilde{V}}$	0++	4.9 - 5.7	5.90 ± 0.10	3.9	(41 - 61)%	$\ll 1\%$
$[uc]_P[\overline{dc}]_P$	0++	5.2 - 6.0	6.03 ± 0.10	4.1	(40 - 60)%	$\ll 1\%$
$\boxed{[uc]_S[\overline{dc}]_A - [uc]_A[\overline{dc}]_S}$	1+-	2.7 - 3.1	4.40 ± 0.10	1.4	(40 - 63)%	< 1%
$[uc]_A[\overline{dc}]_A$	1+-	3.3 - 3.7	4.60 ± 0.10	1.7	(40-59)%	$\ll 1\%$
$ [uc]_S[\overline{dc}]_{\widetilde{A}} - [uc]_{\widetilde{A}}[\overline{dc}]_S$	1+-	3.3 - 3.7	4.60 ± 0.10	1.7	(40-59)%	$\ll 1\%$
$\left [uc]_{\widetilde{A}} [\overline{dc}]_{A} - [uc]_{A} [\overline{dc}]_{\widetilde{A}} \right $	1+-	3.2 - 3.6	4.60 ± 0.10	1.7	(41 - 61)%	$\ll 1\%$
$\left [uc]_{\widetilde{V}} [\overline{dc}]_V + [uc]_V [\overline{dc}]_{\widetilde{V}} \right $	1+-	3.7 - 4.1	5.25 ± 0.10	2.9	(41 - 60)%	$\ll 1\%$
$[uc]_V [\overline{dc}]_V$	1+-	5.1 - 5.9	6.00 ± 0.10	4.1	(41 - 60)%	$\ll 1\%$
$ [uc]_P[\overline{dc}]_V + [uc]_V[\overline{dc}]_P$	1+-	5.1 - 5.9	6.00 ± 0.10	4.1	(41 - 60)%	$\ll 1\%$
$\boxed{[uc]_S[\overline{dc}]_A + [uc]_A[\overline{dc}]_S}$	1++	2.7 - 3.1	4.40 ± 0.10	1.4	(40 - 62)%	$\ll 1\%$
$ [uc]_S[\overline{dc}]_{\widetilde{A}} + [uc]_{\widetilde{A}}[\overline{dc}]_S$	1++	3.3 - 3.7	4.60 ± 0.10	1.7	(40-59)%	$\ll 1\%$
$\left [uc]_{\widetilde{V}}[\overline{dc}]_{V} - [uc]_{V}[\overline{dc}]_{\widetilde{V}} \right $	1++	2.8 - 3.2	4.62 ± 0.10	1.8	(40 - 63)%	< 2%
$\left[uc \right]_{\widetilde{A}} [\overline{dc}]_A + [uc]_A [\overline{dc}]_{\widetilde{A}}$	1++	4.6 - 5.3	5.73 ± 0.10	3.7	(40 - 60)%	$\ll 1\%$
$\left [uc]_P [\overline{dc}]_V - [uc]_V [\overline{dc}]_P \right $	1++	5.1 - 5.9	6.00 ± 0.10	4.1	(40-60)%	$\ll 1\%$
$[uc]_A [\overline{dc}]_A$	2^{++}	3.3 - 3.7	4.65 ± 0.10	1.8	(40 - 60)%	< 1%
$[uc]_V [\overline{dc}]_V$	2^{++}	5.0 - 5.8	5.95 ± 0.10	4.0	(40-60)%	$\ll 1\%$

• Phys.Rev. D102 (2020) 014018; Chin.Phys. C44 (2020) 063105

$Z_c(X_c)$	J^{PC}	$M_Z({ m GeV})$	Assignments	$Z_c'(X_c')$
$[uc]_S[\overline{dc}]_S$	0++	3.88 ± 0.09	?X(3860)	
$[uc]_A[\overline{dc}]_A$	0++	3.95 ± 0.09	?X(3915)	
$[uc]_{ ilde{A}}[\overline{dc}]_{ ilde{A}}$	0++	3.98 ± 0.08		
$[uc]_V [\overline{dc}]_V$	0++	4.65 ± 0.09		
$[uc]_{ ilde{V}}[\overline{dc}]_{ ilde{V}}$	0++	5.35 ± 0.09		
$[uc]_P[\overline{dc}]_P$	0++	5.49 ± 0.09		
$[uc]_S[\overline{dc}]_A - [uc]_A[\overline{dc}]_S$	1+-	3.90 ± 0.08	$? Z_c(3900)$	$?Z_c(4430)$
$[uc]_A[\overline{dc}]_A$	1+-	4.02 ± 0.09	$?Z_c(4020/4055)$	$? Z_c(4600)$
$[uc]_{S}[\overline{dc}]_{\widetilde{A}} - [uc]_{\widetilde{A}}[\overline{dc}]_{S}$	1+-	4.01 ± 0.09	$?Z_c(4020/4055)$	$? Z_c(4600)$
$[uc]_{\widetilde{A}}[\overline{dc}]_A - [uc]_A[\overline{dc}]_{\widetilde{A}}$	1+-	4.02 ± 0.09	$?Z_c(4020/4055)$	$? Z_c(4600)$
$[uc]_{\widetilde{V}}[\overline{dc}]_V + [uc]_V[\overline{dc}]_{\widetilde{V}}$	1+-	4.66 ± 0.10	$? Z_c(4600)$	
$[uc]_V [\overline{dc}]_V$	1+-	5.46 ± 0.09		
$[uc]_P[\overline{dc}]_V + [uc]_V[\overline{dc}]_P$	1+-	5.45 ± 0.09		
$[uc]_S[\overline{dc}]_A + [uc]_A[\overline{dc}]_S$	1++	3.91 ± 0.08	?X(3872)	
$[uc]_{S}[\overline{dc}]_{\widetilde{A}} + [uc]_{\widetilde{A}}[\overline{dc}]_{S}$	1++	4.02 ± 0.09	$? Z_c(4050)$	
$[uc]_{\widetilde{V}}[\overline{dc}]_V - [uc]_V[\overline{dc}]_{\widetilde{V}}$	1++	4.08 ± 0.09	$? Z_c(4050)$	
$[uc]_{\widetilde{A}}[\overline{dc}]_A + [uc]_A[\overline{dc}]_{\widetilde{A}}$	1++	5.19 ± 0.09		
$[uc]_P[\overline{dc}]_V - [uc]_V[\overline{dc}]_P$	1++	5.46 ± 0.09		
$[uc]_A [\overline{dc}]_A$	2^{++}	4.08 ± 0.09	$?Z_c(4050)$	
$[uc]_V [\overline{dc}]_V$	2^{++}	5.40 ± 0.09		

• Phys.Rev. D102 (2020) 014018

$Z_c(X_c)$	J^{PC}	$M_Z({ m GeV})$	Assignments	$Z_c'(X_c')$
$[uc]_A[\overline{dc}]_A$	0++	3.95 ± 0.09	?X(3915)	$?\chi_{c0}(4475)$
$[uc]_{ ilde{A}}[\overline{dc}]_{ ilde{A}}$	0++	3.98 ± 0.08		$?\chi_{c0}(4475)$
$[uc]_V [\overline{dc}]_V$	0++	4.65 ± 0.09	?? $\chi_{c0}(4710)$	
$[uc]_A[\overline{dc}]_A$	1+-	4.02 ± 0.09	$? h_c(4000)$	
$[uc]_S[\overline{dc}]_{\widetilde{A}} - [uc]_{\widetilde{A}}[\overline{dc}]_S$	1+-	4.01 ± 0.09	$2 h_c(4000)$	
$[uc]_{\widetilde{A}}[\overline{dc}]_A - [uc]_A[\overline{dc}]_{\widetilde{A}}$	1+-	4.02 ± 0.09	$2 h_c(4000)$	
$[uc]_{S}[\overline{dc}]_{\widetilde{A}} + [uc]_{\widetilde{A}}[\overline{dc}]_{S}$	1++	4.02 ± 0.09	? $\chi_{c1}(4010)$	
$[uc]_{\widetilde{V}}[\overline{dc}]_V - [uc]_V[\overline{dc}]_{\widetilde{V}}$	1++	4.08 ± 0.09	$? Z_c(4050)$	$?\chi_{c1}(4650)$

利用PRD结果, 解释LHCb新粒子 arXiv:2406.03156 [hep-ex] arXiv:2407.12475 [hep-ex]

• Chin.Phys.C45 (2021) 073107; 基于SU(3)对称性破缺获得质量 谱; Chin.Phys.C46 (2022) 123106

$Z_c(X_c)$	J^{PC}	$M_Z({ m GeV})$	Assignments
$[uc]_S[\overline{sc}]_S$	0++	3.97 ± 0.09	
$[uc]_A[\overline{sc}]_A$	0++	4.04 ± 0.09	
$[uc]_{\widetilde{A}}[\overline{sc}]_{\widetilde{A}}$	0++	4.07 ± 0.08	
$[uc]_V[\overline{sc}]_V$	0++	4.74 ± 0.09	
$[uc]_{ ilde{V}}[\overline{sc}]_{ ilde{V}}$	0++	5.44 ± 0.09	
$[uc]_P[\overline{sc}]_P$	0++	5.58 ± 0.09	
$[uc]_S[\overline{sc}]_A - [uc]_A[\overline{sc}]_S$	1+-	3.99 ± 0.09	$?Z_{cs}(3985)$
$[uc]_A[\overline{sc}]_A$	1+-	4.11 ± 0.09	$? Z_{cs}(4123)$
$[uc]_S[\overline{sc}]_{\widetilde{A}} - [uc]_{\widetilde{A}}[\overline{sc}]_S$	1+-	4.10 ± 0.09	$? Z_{cs}(4123)$
$[uc]_{\widetilde{A}}[\overline{sc}]_{A}^{\widetilde{A}} - [uc]_{A}^{\widetilde{A}}[\overline{sc}]_{\widetilde{A}}$	1+-	4.11 ± 0.09	$? Z_{cs}(4123)$
$[uc]_{\widetilde{V}}[\overline{sc}]_V + [uc]_V[\overline{sc}]_{\widetilde{V}}$	1+-	4.75 ± 0.10	
$[uc]_V[\overline{sc}]_V$	1+-	5.55 ± 0.09	
$[uc]_P[\overline{sc}]_V + [uc]_V[\overline{sc}]_P$	1+-	5.54 ± 0.09	
$[uc]_S[\overline{sc}]_A + [uc]_A[\overline{sc}]_S$	1++	3.99 ± 0.09	$?Z_{cs}(3985)$
$[uc]_{S}[\overline{sc}]_{\widetilde{A}} + [uc]_{\widetilde{A}}[\overline{sc}]_{S}$	1++	4.11 ± 0.09	$? Z_{cs}(4123)$
$[uc]_{\widetilde{V}}[\overline{sc}]_V - [uc]_V[\overline{sc}]_{\widetilde{V}}$	1++	4.17 ± 0.09	
$[uc]_{\widetilde{A}}[\overline{sc}]_A + [uc]_A[\overline{sc}]_{\widetilde{A}}$	1++	5.28 ± 0.09	
$[uc]_P[\overline{sc}]_V - [uc]_V[\overline{sc}]_P$	1++	5.55 ± 0.09	
$[uc]_A[\overline{sc}]_A$	2^{++}	4.17 ± 0.09	
$[uc]_V[\overline{sc}]_V$	2^{++}	5.49 ± 0.09	

• arXiv:2407.08759[hep-ph](隐粲隐奇异基态粒子)

X_c	J^{PC}	$T^2(\text{GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	$\mu({ m GeV})$	pole	D(10)
$[sc]_S[\overline{sc}]_S$	0++	3.1 - 3.5	4.65 ± 0.10	1.4	(40 - 61)%	$\ll 1\%$
$[sc]_A[\overline{sc}]_A$	0^{++}	3.1 - 3.5	4.70 ± 0.10	1.5	(39 - 60)%	$\ll 1\%$
$[sc]_{\widetilde{A}}[\overline{sc}]_{\widetilde{A}}$	0^{++}	3.4 - 3.9	4.75 ± 0.10	1.6	(39 - 61)%	$\ll 1\%$
$[sc]_V[\overline{sc}]_V$	0^{++}	4.0 - 4.5	5.40 ± 0.10	2.8	(41 - 60)%	$\ll 1\%$
$[sc]_{ ilde{V}}[\overline{sc}]_{ ilde{V}}$	0^{++}	5.2 - 6.1	6.05 ± 0.10	3.7	(40 - 61)%	$\ll 1\%$
$[sc]_P[\overline{sc}]_P$	0^{++}	5.2 - 6.1	6.10 ± 0.10	3.8	(40 - 61)%	$\ll 1\%$
$[sc]_S[\overline{sc}]_S^*$	0^{++}	2.8 - 3.2	4.50 ± 0.10	1.3	(39 - 61)%	$\ll 1\%$
$[sc]_A[\overline{sc}]_A^*$	0^{++}	2.7 - 3.1	4.55 ± 0.10	1.3	(39 - 62)%	$\leq 1\%$
$[sc]_{\tilde{A}}[\overline{sc}]_{\tilde{A}}^*$	0^{++}	3.0 - 3.5	4.60 ± 0.10	1.4	(39 - 62)%	$\ll 1\%$
$[sc]_V[\overline{sc}]_V^*$	0^{++}	3.6 - 4.1	5.25 ± 0.10	2.6	(40 - 62)%	$\ll 1\%$
$[sc]_{\tilde{V}}[\overline{sc}]_{\tilde{V}}^*$	0^{++}	4.7 - 5.4	5.86 ± 0.10	3.5	(41 - 60)%	$\ll 1\%$
$[sc]_P[\overline{sc}]_P^*$	0^{++}	4.8 - 5.6	5.95 ± 0.10	3.7	(40 - 61)%	$\ll 1\%$

不带星号, 1S与2S能级差中火值小于0.60GeV 带星号, 1S与2S能级差中火值小于0.55GeV.

• arXiv:2407.08759[hep-ph](隐粲隐奇异基态粒子)

X_c	J^{PC}	$T^2(\text{GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	μ (GeV)	pole	D(10)
$[sc]_S[\overline{sc}]_A - [sc]_A[\overline{sc}]_S$	1+-	3.2 - 3.7	4.70 ± 0.10	1.5	(39-61)%	$\ll 1\%$
$[sc]_A[\overline{sc}]_A$	1+-	3.4 - 3.8	4.76 ± 0.10	1.6	(41 - 60)%	$\ll 1\%$
$[sc]_S[\overline{sc}]_{\widetilde{A}} - [sc]_{\widetilde{A}}[\overline{sc}]_S$	1+-	3.4 - 3.9	4.76 ± 0.10	1.6	(39 - 61)%	$\ll 1\%$
$[sc]_{\widetilde{A}}[\overline{sc}]_{A} - [sc]_{A}[\overline{sc}]_{\widetilde{A}}$	1+-	3.4 - 3.8	4.76 ± 0.10	1.6	(40 - 60)%	$\ll 1\%$
$[sc]_{\widetilde{V}}^{n}[\overline{sc}]_{V} + [sc]_{V}[\overline{sc}]_{\widetilde{V}}^{n}$	1+-	4.0 - 4.5	5.40 ± 0.10	2.8	(40 - 60)%	$\ll 1\%$
$[sc]_V[\overline{sc}]_V$	1+-	5.4 - 6.3	6.16 ± 0.10	3.8	(41 - 61)%	$\ll 1\%$
$[sc]_P[\overline{sc}]_V + [sc]_V[\overline{sc}]_P$	1+-	4.6 - 5.3	5.70 ± 0.10	3.2	(41 - 61)%	$\ll 1\%$
$[sc]_S[\overline{sc}]_A + [sc]_A[\overline{sc}]_S$	1++	3.2 - 3.6	4.70 ± 0.10	1.5	(41 - 61)%	$\ll 1\%$
$[sc]_{S}[\overline{sc}]_{\widetilde{A}} + [sc]_{\widetilde{A}}[\overline{sc}]_{S}$	1++	3.4 - 3.9	4.76 ± 0.10	1.6	(39 - 60)%	$\ll 1\%$
$[sc]_{\widetilde{V}}[\overline{sc}]_V - [sc]_V[\overline{sc}]_{\widetilde{V}}$	1++	3.2 - 3.6	4.86 ± 0.10	1.9	(40 - 61)%	$\ll 1\%$
$[sc]_{\widetilde{A}}[\overline{sc}]_A + [sc]_A[\overline{sc}]_{\widetilde{A}}$	1++	4.9 - 5.8	5.93 ± 0.10	3.5	(39 - 61)%	$\ll 1\%$
$[sc]_P[\overline{sc}]_V - [sc]_V[\overline{sc}]_P$	1++	4.6 - 5.4	5.70 ± 0.10	3.2	(39 - 61)%	$\ll 1\%$
$[sc]_A[\overline{sc}]_A$	2^{++}	3.5 - 4.0	4.82 ± 0.10	1.8	(40-60)%	$\ll 1\%$
$[sc]_V[\overline{sc}]_V$	2^{++}	5.1 - 6.0	6.05 ± 0.10	3.7	(40 - 61)%	$\ll 1\%$

• arXiv:2407.08759 [hep-ph] (隐粲隐奇异基态粒子)

X_c	J^{PC}	$M_X({ m GeV})$	Assignments	X_c'
$[sc]_S[\overline{sc}]_S$	0^{++}	4.08 ± 0.09		
$[sc]_A[\overline{sc}]_A$	0^{++}	4.13 ± 0.09		?X(4700)
$[sc]_{ ilde{A}}[\overline{sc}]_{ ilde{A}}$	0^{++}	4.16 ± 0.09		?X(4700)
$[sc]_V[\overline{sc}]_V$	0^{++}	4.82 ± 0.09		
$[sc]_{ ilde{V}}[\overline{sc}]_{ ilde{V}}$	0^{++}	5.46 ± 0.10		
$[sc]_P[\overline{sc}]_P$	0^{++}	5.54 ± 0.10		
$[sc]_S[\overline{sc}]_S^*$	0^{++}	3.99 ± 0.09	?X(3960)	?X(4500)
$[sc]_A[\overline{sc}]_A^*$	0^{++}	4.04 ± 0.09		
$[sc]_{ ilde{A}}[\overline{sc}]_{ ilde{A}}^*$	0^{++}	4.08 ± 0.08		
$[sc]_V[\overline{sc}]_V^*$	0^{++}	4.70 ± 0.09	?X(4700)	
$[sc]_{ ilde{V}}[\overline{sc}]_{ ilde{V}}^{*}$	0^{++}	5.37 ± 0.11		
$[sc]_P[\overline{sc}]_P^*$	0^{++}	5.47 ± 0.11		

不带星号, 1S与2S能级差中火值小于0.60GeV 带星号, 1S与2S能级差中火值小于0.55GeV.

• arXiv:2407.08759 [hep-ph] (隐粲隐奇异基态粒子)

X_c	J^{PC}	$M_X({ m GeV})$	Assignments	X_c'
$[sc]_S[\overline{sc}]_A - [sc]_A[\overline{sc}]_S$	1+-	4.11 ± 0.10		
$[sc]_A[\overline{sc}]_A$	1+-	4.17 ± 0.08		
$[sc]_{S}[\overline{sc}]_{\widetilde{A}} - [sc]_{\widetilde{A}}[\overline{sc}]_{S}$	1+-	4.17 ± 0.09		
$\left[sc \right]_{\widetilde{A}} [\overline{sc}]_{A} - [sc]_{A} [\overline{sc}]_{\widetilde{A}}$	1+-	4.18 ± 0.09		
$\left[sc \right]_{\widetilde{V}} [\overline{sc}]_{V} + [sc]_{V} [\overline{sc}]_{\widetilde{V}}$	1+-	4.82 ± 0.09		
$[sc]_V[\overline{sc}]_V$	1+-	5.57 ± 0.11		
$[sc]_P[\overline{sc}]_V + [sc]_V[\overline{sc}]_P$	1+-	5.13 ± 0.10		
$[sc]_S[\overline{sc}]_A + [sc]_A[\overline{sc}]_S$	1++	4.11 ± 0.09	?X(4140)	?X(4685)
$[sc]_{S}[\overline{sc}]_{\widetilde{A}} + [sc]_{\widetilde{A}}[\overline{sc}]_{S}$	1++	4.17 ± 0.09	?X(4140)	?X(4685)
$[sc]_{\widetilde{V}}[\overline{sc}]_V - [sc]_V[\overline{sc}]_{\widetilde{V}}$	1++	4.29 ± 0.09	?X(4274)	
$[sc]_{\widetilde{A}}[\overline{sc}]_A + [sc]_A[\overline{sc}]_{\widetilde{A}}$	1++	5.34 ± 0.10		
$[sc]_P[\overline{sc}]_V - [sc]_V[\overline{sc}]_P$	1++	5.12 ± 0.10		
$[sc]_A[\overline{sc}]_A$	2^{++}	4.24 ± 0.09		
$[sc]_V[\overline{sc}]_V$	2^{++}	5.49 ± 0.11		

• Nucl.Phys.B973(2021)115592(矢量四夸克态,不引入明确P波)

Y_c	J^{PC}	$T^2(\text{GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	$\mu({ m GeV})$	pole
$[uc]_P[\overline{dc}]_A - [uc]_A[\overline{dc}]_P$	1	3.7 - 4.1	5.15 ± 0.10	2.9	(43 - 61)%
$[uc]_P[\overline{dc}]_A + [uc]_A[\overline{dc}]_P$	1^{-+}	3.7 - 4.1	5.10 ± 0.10	2.8	(42 - 60)%
$[uc]_S[\overline{dc}]_V + [uc]_V[\overline{dc}]_S$	1	3.2 - 3.6	4.85 ± 0.10	2.4	(42 - 62)%
$[uc]_S[\overline{dc}]_V - [uc]_V[\overline{dc}]_S$	1^{-+}	3.7 - 4.1	5.15 ± 0.10	2.9	(41 - 60)%
$[uc]_{ ilde{V}}[\overline{dc}]_A - [uc]_A[\overline{dc}]_{ ilde{V}}$	1	3.6 - 4.0	5.05 ± 0.10	2.7	(42 - 60)%
$[uc]_{\tilde{V}}[\overline{dc}]_A + [uc]_A[\overline{dc}]_{\tilde{V}}$	1^{-+}	3.7 - 4.1	5.15 ± 0.10	2.9	(41 - 60)%
$[uc]_{\tilde{A}}[\overline{dc}]_V + [uc]_V[\overline{dc}]_{\tilde{A}}$	1	3.5 - 3.9	5.00 ± 0.10	2.6	(42 - 61)%
$[uc]_{\tilde{A}}[\overline{dc}]_V - [uc]_V[\overline{dc}]_{\tilde{A}}$	1^{-+}	3.6 - 4.0	5.05 ± 0.10	2.7	(42 - 61)%
$[uc]_S[\overline{dc}]_{\tilde{V}} - [uc]_{\tilde{V}}[\overline{dc}]_S$	1	3.4 - 3.8	5.00 ± 0.10	2.6	(42 - 61)%
$[uc]_S[\overline{dc}]_{\tilde{V}} + [uc]_{\tilde{V}}[\overline{dc}]_S$	1^{-+}	3.4 - 3.8	5.00 ± 0.10	2.6	(42 - 61)%
$[uc]_P[\overline{dc}]_{\tilde{A}} - [uc]_{\tilde{A}}[\overline{dc}]_P$	1	3.7 - 4.1	5.10 ± 0.10	2.8	(43 - 61)%
$[uc]_P[\overline{dc}]_{\tilde{A}} + [uc]_{\tilde{A}}[\overline{dc}]_P$	1^{-+}	3.7 - 4.1	5.10 ± 0.10	2.8	(43 - 61)%
$[uc]_A[\overline{dc}]_A$	1	3.8 - 4.2	5.20 ± 0.10	3.0	(42 - 60)%

• Nucl.Phys.B973(2021)115592(矢量四夸克态,不引入明确P波)

Y_c	J^{PC}	$M_Y({ m GeV})$	Assignments
$[uc]_P[\overline{dc}]_A - [uc]_A[\overline{dc}]_P$	1	4.66 ± 0.07	? $Y(4660)$
$[uc]_P[\overline{dc}]_A + [uc]_A[\overline{dc}]_P$	1-+	4.61 ± 0.07	
$[uc]_S[\overline{dc}]_V + [uc]_V[\overline{dc}]_S$	1	4.35 ± 0.08	? $Y(4360/4390)$
$[uc]_S[\overline{dc}]_V - [uc]_V[\overline{dc}]_S$	1 ⁻⁺	4.66 ± 0.09	
$[uc]_{\tilde{V}}[\overline{dc}]_A - [uc]_A[\overline{dc}]_{\tilde{V}}$	1	4.53 ± 0.07	? $Y(4500)$
$[uc]_{\tilde{V}}[\overline{dc}]_A + [uc]_A[\overline{dc}]_{\tilde{V}}$	1 ⁻⁺	4.65 ± 0.08	
$[uc]_{\tilde{A}}[\overline{dc}]_V + [uc]_V[\overline{dc}]_{\tilde{A}}$	1	4.48 ± 0.08	? $Y(4500)$
$[uc]_{\tilde{A}}[\overline{dc}]_V - [uc]_V[\overline{dc}]_{\tilde{A}}$	1-+	4.55 ± 0.07	
$[uc]_S[\overline{dc}]_{\tilde{V}} - [uc]_{\tilde{V}}[\overline{dc}]_S$	1	4.50 ± 0.09	? $Y(4500)$
$[uc]_S[\overline{dc}]_{\tilde{V}} + [uc]_{\tilde{V}}[\overline{dc}]_S$	1 ⁻⁺	4.50 ± 0.09	
$[uc]_P[\overline{dc}]_{\tilde{A}} - [uc]_{\tilde{A}}[\overline{dc}]_P$	1	4.60 ± 0.07	? $Y(4600)$
$[uc]_P[\overline{dc}]_{\tilde{A}} + [uc]_{\tilde{A}}[\overline{dc}]_P$	1 ⁻⁺	4.61 ± 0.08	
$[uc]_A[\overline{dc}]_A$	1	4.69 ± 0.08	? $Y(4660)$

BESIII arXiv:2407.07651 [hep-ex]

• Nucl.Phys.B1002(2024)116514(矢量四夸克态,不引入明确P波)

Y_c	J^{PC}	$T^2(\text{GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	$\mu(\text{GeV})$	pole
$[sc]_P[\overline{sc}]_A - [sc]_A[\overline{sc}]_P$	1	4.1 - 4.7	5.35 ± 0.10	2.9	(40 - 61)%
$[sc]_P[\overline{sc}]_A + [sc]_A[\overline{sc}]_P$	1-+	4.0 - 4.6	5.30 ± 0.10	2.8	(41 - 61)%
$[sc]_S[\overline{sc}]_V + [sc]_V[\overline{sc}]_S$	1	3.5 - 4.0	5.05 ± 0.10	2.5	(41 - 62)%
$[sc]_S[\overline{sc}]_V - [sc]_V[\overline{sc}]_S$	1-+	4.0 - 4.6	5.35 ± 0.10	2.9	(40 - 60)%
$[sc]_{\tilde{V}}[\overline{sc}]_A - [sc]_A[\overline{sc}]_{\tilde{V}}$	1	3.9 - 4.5	5.25 ± 0.10	2.7	(40 - 61)%
$[sc]_{\tilde{V}}[\overline{sc}]_A + [sc]_A[\overline{sc}]_{\tilde{V}}$	1-+	4.0 - 4.6	5.35 ± 0.10	2.9	(40 - 61)%
$[sc]_{\tilde{A}}[\overline{sc}]_V + [sc]_V[\overline{sc}]_{\tilde{A}}$	1	3.8 - 4.4	5.20 ± 0.10	2.7	(40 - 61)%
$[sc]_{\tilde{A}}[\overline{sc}]_V - [sc]_V[\overline{sc}]_{\tilde{A}}$	1-+	3.9 - 4.5	5.25 ± 0.10	2.7	(40 - 61)%
$[sc]_S[\overline{sc}]_{\tilde{V}} - [sc]_{\tilde{V}}[\overline{sc}]_S$	1	3.7 - 4.2	5.20 ± 0.10	2.7	(41 - 62)%
$[sc]_S[\overline{sc}]_{\tilde{V}} + [sc]_{\tilde{V}}[\overline{sc}]_S$	1-+	3.7 - 4.3	5.20 ± 0.10	2.7	(40 - 62)%
$[sc]_P[\overline{sc}]_{\tilde{A}} - [sc]_{\tilde{A}}[\overline{sc}]_P$	1	4.1 - 4.7	5.30 ± 0.10	2.8	(40 - 60)%
$[sc]_P[\overline{sc}]_{\tilde{A}} + [sc]_{\tilde{A}}[\overline{sc}]_P$	1-+	4.1 - 4.7	5.30 ± 0.10	2.8	(40 - 60)%
$[sc]_A[\overline{sc}]_A$	1	4.2 - 4.9	5.40 ± 0.10	3.0	(40 - 60)%

• Nucl.Phys.B1002(2024)116514(矢量四夸克态,不引入明确P波)

Y_c	J^{PC}	$M_Y({ m GeV})$	Assignments
$[sc]_P[\overline{sc}]_A - [sc]_A[\overline{sc}]_P$	1	4.80 ± 0.08	? $Y(4790)$
$[sc]_P[\overline{sc}]_A + [sc]_A[\overline{sc}]_P$	1-+	4.75 ± 0.08	
$[sc]_S[\overline{sc}]_V + [sc]_V[\overline{sc}]_S$	1	4.53 ± 0.08	
$[sc]_S[\overline{sc}]_V - [sc]_V[\overline{sc}]_S$	1-+	4.83 ± 0.09	?? $\eta_{c1}(4800)$
$[sc]_{\tilde{V}}[\overline{sc}]_A - [sc]_A[\overline{sc}]_{\tilde{V}}$	1	4.70 ± 0.08	? $Y(4710)$
$[sc]_{\tilde{V}}[\overline{sc}]_A + [sc]_A[\overline{sc}]_{\tilde{V}}$	1-+	4.81 ± 0.09	?? $\eta_{c1}(4800)$
$[sc]_{\tilde{A}}[\overline{sc}]_V + [sc]_V[\overline{sc}]_{\tilde{A}}$	1	4.65 ± 0.08	? Y(4660)
$[sc]_{\tilde{A}}[\overline{sc}]_V - [sc]_V[\overline{sc}]_{\tilde{A}}$	1-+	4.71 ± 0.08	
$[sc]_S[\overline{sc}]_{\tilde{V}} - [sc]_{\tilde{V}}[\overline{sc}]_S$	1	4.68 ± 0.09	? Y(4660)
$[sc]_S[\overline{sc}]_{\tilde{V}} + [sc]_{\tilde{V}}[\overline{sc}]_S$	1-+	4.68 ± 0.09	?? X(4630)
$[sc]_P[\overline{sc}]_{\tilde{A}} - [sc]_{\tilde{A}}[\overline{sc}]_P$	1	4.75 ± 0.08	? $Y(4750)$
$[sc]_P[\overline{sc}]_{\tilde{A}} + [sc]_{\tilde{A}}[\overline{sc}]_P$	1-+	4.75 ± 0.08	
$[sc]_A[\overline{sc}]_A$	1	4.85 ± 0.09	

BESIII arXiv:2407.07651 [hep-ex]

LHCb arXiv:2407.12475 [hep-ex]

• 矢量四夸克与可能得确认; Eur.Phys.J.C79(2019)29; 引入明确P波

$ S_{qc}, S_{\overline{q}\overline{c}}; S, L; J angle$	Maiani	Ali-Maiani	Currents
0,0;0,1;1 angle	Y(4008)	Y(4220)	$J^1_\mu(x)$
$\frac{1}{\sqrt{2}}(1,0;1,1;1\rangle + 0,1;1,1;1\rangle)$	Y(4260)	Y(4330)	$J_{\mu u}(x)$
$ 1,1;0,1;1\rangle$	Y(4290/4220)	Y(4390)	$J^2_\mu(x)$
1,1;2,1;1 angle	Y(4630)	Y(4660)	$J^3_\mu(x)$
1,1;2,3;1 angle			

• Eur.Phys.J. C79 (2019) 29; 基于修正的能标公式

$ S_{qc}, S_{\bar{q}\bar{c}}; S, L; J angle$	μ (GeV)	$T^2({ m GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	pole	D(10)
0,0;0,1;1 angle	1.1	2.2 - 2.8	4.80 ± 0.10	(49 - 81)%	$\leq 1\%$
$ 1,1;0,1;1\rangle$	1.2	2.2 - 2.8	4.85 ± 0.10	(45 - 79)%	(1-5)%
$\frac{1}{\sqrt{2}}(1,0;1,1;1\rangle + 0,1;1,1;1\rangle)$	1.3	2.6 - 3.2	4.90 ± 0.10	(46 - 75)%	$\ll 1\%$
$ 1,1;2,1;1\rangle$	1.4	2.6 - 3.2	4.90 ± 0.10	(40 - 71)%	$\leq 1\%$

• Eur.Phys.J. C79 (2019) 29; 到目前为止, QCD求和规则能获得的最低矢量四夸克态质量谱。

$ S_{qc}, S_{\bar{q}\bar{c}}; S, L; J angle$	$M_Y({ m GeV})$	This Work	Ali-Maiani
0,0;0,1;1 angle	4.24 ± 0.10	Y(4220)	Y(4220)
$\frac{1}{\sqrt{2}}(1,0;1,1;1\rangle + 0,1;1,1;1\rangle)$	4.31 ± 0.10	Y(4320/4390)	Y(4330)
$ 1,1;0,1;1\rangle$	4.28 ± 0.10	Y(4220/4320)	Y(4390)
$ 1,1;2,1;1\rangle$	4.33 ± 0.10	Y(4320/4390)	Y(4660)

• arXiv: 2405.04145 [hep-ph]; 更新版: 1P; 1P+2P

$ S_{qc}, S_{\bar{q}\bar{c}}; S, L; J angle$	μ (GeV)	$T^2({ m GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	pole	D(10)
0,0;0,1;1 angle	1.1	2.6 - 3.0	4.75 ± 0.10	(40 - 65)%	< 1%
$ 1,1;0,1;1\rangle$	1.2	2.5 - 2.9	4.80 ± 0.10	(39-64)%	< 3%
$\frac{1}{\sqrt{2}}(1,0;1,1;1\rangle + 0,1;1,1;1\rangle)$	1.3	3.0 - 3.4	4.85 ± 0.10	(38 - 60)%	$\ll 1\%$
$ 1,1;2,1;1\rangle$	1.3	2.7 - 3.1	4.85 ± 0.10	(39-63)%	< 1%

$ S_{qc}, S_{\bar{q}\bar{c}}; S, L; J angle$	$\mu(\text{GeV})$	$T^2(\text{GeV}^2)$	$\sqrt{s_0'}(\text{GeV})$	pole	D(10)
0,0;0,1;1 angle	2.4	2.8 - 3.2	5.15 ± 0.10	(67 - 85)%	$\ll 1\%$
$ 1,1;0,1;1\rangle$	2.5	2.6 - 3.0	5.20 ± 0.10	(67 - 86)%	< 1%
$\frac{1}{\sqrt{2}}(1,0;1,1;1\rangle + 0,1;1,1;1\rangle)$	2.6	3.0 - 3.4	5.25 ± 0.10	(67 - 84)%	$\ll 1\%$
$ 1,1;2,1;1\rangle$	2.6	2.7 - 3.1	5.25 ± 0.10	(68 - 87)%	$\ll 1\%$

• arXiv: 2405.04145 [hep-ph]; 更新版 $e^+e^- \rightarrow \omega X(3872)$, arXiv: 2404.13840 [hep-ex]

$ S_{qc}, S_{\bar{q}\bar{c}}; S, L; J angle$	$M_Y({ m GeV})$	Assignments
$\ket{0,0;0,1;1}$ (1P)	4.24 ± 0.09	Y(4220/4260)
$\left 0,0;0,1;1 ight angle$ (2P)	4.75 ± 0.10	? $Y(4750)$
$\left 1,1;0,1;1 ight angle$ (1P)	4.28 ± 0.09	Y(4220/4320)
$ 1,1;0,1;1\rangle$ (2P)	4.81 ± 0.10	
$\frac{1}{\sqrt{2}}(1,0;1,1;1\rangle + 0,1;1,1;1\rangle)$ (1P)	4.31 ± 0.09	Y(4320/4390)
$\frac{1}{\sqrt{2}}(1,0;1,1;1\rangle + 0,1;1,1;1\rangle)$ (2P)	4.85 ± 0.09	
$ 1,1;2,1;1\rangle$ (1P)	4.33 ± 0.09	Y(4320/4390)
$ 1,1;2,1;1\rangle$ (2P)	4.86 ± 0.10	

• Nucl.Phys.B978(2022)115761 (赝标四夸克态, 不引入明确P波)

Z_c	J^{PC}	$T^2(\text{GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	$\mu({ m GeV})$	pole
$[uc]_A[d\bar{c}]_V - [uc]_V[d\bar{c}]_A$	0^{-+}	3.7 - 4.1	5.10 ± 0.10	2.7	(42 - 60)%
$[uc]_A[d\bar{c}]_V + [uc]_V[d\bar{c}]_A$	0	3.7 - 4.1	5.10 ± 0.10	2.8	(42 - 60)%
$[uc]_A[\bar{s}\bar{c}]_V - [uc]_V[\bar{s}\bar{c}]_A$	0^{-+}	3.7 - 4.1	5.15 ± 0.10	2.7	(43 - 61)%
$[uc]_A[\bar{s}\bar{c}]_V + [uc]_V[\bar{s}\bar{c}]_A$	0	3.7 - 4.1	5.15 ± 0.10	2.8	(43 - 61)%
$[sc]_A[\bar{s}\bar{c}]_V - [sc]_V[\bar{s}\bar{c}]_A$	0-+	3.8 - 4.2	5.20 ± 0.10	2.7	(42 - 60)%
$[sc]_A[\bar{s}\bar{c}]_V + [sc]_V[\bar{s}\bar{c}]_A$	0	3.8 - 4.2	5.20 ± 0.10	2.8	(43 - 60)%
$[uc]_P[\bar{d}\bar{c}]_S + [uc]_S[\bar{d}\bar{c}]_P$	0-+	3.7 - 4.1	5.10 ± 0.10	2.8	(42 - 60)%
$[uc]_P[\bar{d}\bar{c}]_S - [uc]_S[\bar{d}\bar{c}]_P$	0	3.7 - 4.1	5.10 ± 0.10	2.8	(42 - 60)%
$[uc]_P[\bar{s}\bar{c}]_S + [uc]_S[\bar{s}\bar{c}]_P$	0-+	3.7 - 4.1	5.15 ± 0.10	2.8	(43 - 61)%
$[uc]_P[\bar{s}\bar{c}]_S - [uc]_S[\bar{s}\bar{c}]_P$	0	3.7 - 4.1	5.15 ± 0.10	2.8	(43 - 61)%
$[sc]_P[\bar{s}\bar{c}]_S + [sc]_S[\bar{s}\bar{c}]_P$	0-+	3.8 - 4.2	5.20 ± 0.10	2.8	(43 - 61)%
$[sc]_P[\bar{s}\bar{c}]_S - [sc]_S[\bar{s}\bar{c}]_P$	0	3.8 - 4.2	5.20 ± 0.10	2.8	(43 - 61)%
$[uc]_T [d\bar{c}]_T + [uc]_T [d\bar{c}]_T$	0-+	3.7 - 4.1	5.10 ± 0.10	2.7	(41 - 60)%
$[uc]_T[\bar{s}\bar{c}]_T + [uc]_T[\bar{s}\bar{c}]_T$	0^{-+}	3.7 - 4.1	5.15 ± 0.10	2.7	(43 - 61)%
$[sc]_T[\bar{s}\bar{c}]_T + [sc]_T[\bar{s}\bar{c}]_T$	0^{-+}	3.8 - 4.2	5.20 ± 0.10	2.7	(42 - 60)%

• Nucl.Phys.B978(2022)115761 (赝标四夸克态, 不引入明确P波)

Z_c	J^{PC}	$M_Z({ m GeV})$	$\lambda_Z({ m GeV}^5)$
$[uc]_A[d\bar{c}]_V - [uc]_V[d\bar{c}]_A$	0-+	4.56 ± 0.08	$(1.33 \pm 0.18) \times 10^{-1}$
$[uc]_A[d\bar{c}]_V + [uc]_V[d\bar{c}]_A$	0	4.58 ± 0.07	$(1.37 \pm 0.17) \times 10^{-1}$
$[uc]_A[\bar{s}\bar{c}]_V - [uc]_V[\bar{s}\bar{c}]_A$	0-+	4.61 ± 0.08	$(1.41 \pm 0.19) \times 10^{-1}$
$[uc]_A[\bar{s}\bar{c}]_V + [uc]_V[\bar{s}\bar{c}]_A$	0	4.63 ± 0.08	$(1.45 \pm 0.19) \times 10^{-1}$
$[sc]_A[\bar{s}\bar{c}]_V - [sc]_V[\bar{s}\bar{c}]_A$	0-+	4.66 ± 0.08	$(1.50 \pm 0.20) \times 10^{-1}$
$[sc]_A[\bar{s}\bar{c}]_V + [sc]_V[\bar{s}\bar{c}]_A$	0	4.67 ± 0.08	$(1.53 \pm 0.20) \times 10^{-1}$
$[uc]_P[\bar{d}\bar{c}]_S + [uc]_S[\bar{d}\bar{c}]_P$	0-+	4.58 ± 0.07	$(6.92 \pm 0.86) \times 10^{-2}$
$[uc]_P[d\bar{c}]_S - [uc]_S[d\bar{c}]_P$	0	4.58 ± 0.07	$(6.91 \pm 0.86) \times 10^{-2}$
$[uc]_P[\bar{s}\bar{c}]_S + [uc]_S[\bar{s}\bar{c}]_P$	0-+	4.63 ± 0.07	$(7.30 \pm 0.90) \times 10^{-2}$
$[uc]_P[\bar{s}\bar{c}]_S - [uc]_S[\bar{s}\bar{c}]_P$	0	4.63 ± 0.07	$(7.30 \pm 0.90) \times 10^{-2}$
$[sc]_P[\bar{s}\bar{c}]_S + [sc]_S[\bar{s}\bar{c}]_P$	0-+	4.67 ± 0.08	$(7.73 \pm 0.97) \times 10^{-2}$
$[sc]_P[\bar{s}\bar{c}]_S - [sc]_S[\bar{s}\bar{c}]_P$	0	4.67 ± 0.08	$(7.73 \pm 0.96) \times 10^{-2}$
$[uc]_T[\bar{d}\bar{c}]_T + [uc]_T[\bar{d}\bar{c}]_T$	0-+	4.57 ± 0.08	$(4.62 \pm 0.61) \times 10^{-1}$
$[uc]_T[\bar{s}\bar{c}]_T + [uc]_T[\bar{s}\bar{c}]_T$	0-+	4.62 ± 0.08	$(4.89 \pm 0.63) \times 10^{-1}$
$[sc]_T[\bar{s}\bar{c}]_T + [sc]_T[\bar{s}\bar{c}]_T$	0-+	4.67 ± 0.08	$(5.19 \pm 0.67) \times 10^{-1}$

• Acta Phys.Polon. B49 (2018) 1781 $(T_{cc}(3875))$

	$T^2(\text{GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	μ (GeV)	pole	$M({ m GeV})$	$\lambda ({ m GeV}^5)$
$cc\bar{u}\bar{d}$	2.6 - 3.0	4.45 ± 0.10	1.3	(39-63)%	3.90 ± 0.09	$(2.64 \pm 0.42) \times 10^{-2}$
$cc\bar{u}\bar{s}$	2.6 - 3.0	4.50 ± 0.10	1.3	(41 - 64)%	3.95 ± 0.08	$(2.88 \pm 0.46) \times 10^{-2}$
$bbar{u}ar{d}$	6.9 - 7.7	11.14 ± 0.10	2.4	(41 - 60)%	10.52 ± 0.08	$(1.30 \pm 0.20) \times 10^{-1}$
$bb\bar{u}\bar{s}$	6.8 - 7.6	11.15 ± 0.10	2.4	(41 - 61)%	10.55 ± 0.08	$(1.33 \pm 0.20) \times 10^{-1}$
$cc\bar{u}\bar{d}$	2.6 - 3.0	4.40 ± 0.10	1.4	(39-62)%	3.85 ± 0.09	$(2.60 \pm 0.42) \times 10^{-2}$

• Eur.Phys.J.C78(2018)19 (双粲四夸克态)

	$T^2({ m GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	$\mu(\text{GeV})$	pole	$M({ m GeV})$	$\lambda ({ m GeV}^5)$
$cc\bar{u}\bar{d}(0^+)$	2.4 - 2.8	4.40 ± 0.10	1.2	(38 - 63)%	3.87 ± 0.09	$(3.90 \pm 0.63) \times 10^{-5}$
$cc\bar{u}\bar{s}(0^+)$	2.6 - 3.0	4.50 ± 0.10	1.3	(38 - 62)%	3.94 ± 0.10	$(4.92 \pm 0.89) \times 10^{-5}$
$cc\bar{s}\bar{s}(0^+)$	2.6 - 3.0	4.55 ± 0.10	1.3	(39 - 63)%	3.99 ± 0.10	$(5.31 \pm 0.99) \times 10^{-5}$
$cc\bar{u}\bar{d}(1^+)$	2.6 - 3.0	4.45 ± 0.10	1.3	(39 - 62)%	3.90 ± 0.09	$(3.44 \pm 0.54) \times 10^{-5}$
$cc\bar{u}\bar{s}(1^+)$	2.6 - 3.0	4.50 ± 0.10	1.3	(40 - 64)%	3.96 ± 0.08	$(3.78 \pm 0.59) \times 10^{\circ}$
$cc\bar{s}\bar{s}(1^+)$	2.7 - 3.1	4.55 ± 0.10	1.3	(39 - 62)%	4.02 ± 0.09	$(4.11 \pm 0.68) \times 10^{-5}$
$cc\bar{u}\bar{d}(2^+)$	2.7 - 3.1	4.50 ± 0.10	1.4	(39 - 62)%	3.95 ± 0.09	$(5.67 \pm 0.90) \times 10^{-5}$
$cc\bar{u}\bar{s}(2^+)$	2.8 - 3.2	4.55 ± 0.10	1.4	(38 - 60)%	4.01 ± 0.09	$(6.27 \pm 1.02) \times 10^{\circ}$
$cc\bar{s}\bar{s}(2^+)$	2.8 - 3.2	4.60 ± 0.10	1.4	(39 - 61)%	4.06 ± 0.09	$(6.78 \pm 1.12) \times 10^{\circ}$
$cc\bar{u}\bar{d}(1^{-})$	3.3 - 3.9	5.20 ± 0.10	2.9	(50 - 73)%	4.66 ± 0.10	$(1.31 \pm 0.17) \times 10^{-5}$
$cc\bar{u}\bar{s}(1^{-})$	3.4 - 4.0	5.25 ± 0.10	2.9	(49 - 71)%	4.73 ± 0.11	$(1.40 \pm 0.19) \times 10^{-5}$
$cc\bar{s}\bar{s}(1^{-})$	3.7 - 4.3	5.30 ± 0.10	2.9	(49 - 72)%	4.78 ± 0.11	$(1.48 \pm 0.19) \times 10^{\circ}$

6 QCD求和规则对色单态-色单 态型四夸克态质量谱的计算

利用QCD求和规则做计算,用的是定域流。对于 色单态-色单态型的四夸克流,有两个色中性的集 团,每个集团和一个介子有相同的量子数,虽然 这个集团,我们也用介子描述,但并不是真正的 物理介子。我们说的分子态,确切地说,应该叫 做色单态-色单态型四夸克态。

如 果 一 个 或 两 个 色 中 性 集 团 含 有P波, 那 $\Delta QCD 求 和 规则 计 算 出 来 的 四 夸 克 态 质 量 大 于 或 远 大 于 相 应 两 个 介 子 的 阈 值。QCD 求 和 规则 不 支 持 <math>PY(4260)$ 看 做 $D\overline{D}_1$ 分 子 态。

• 矢量分子态质量: Chin.Phys. C41 (2017) 083103

	$T^2(\text{GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	pole	$\mu(\text{GeV})$	$M_Y({ m GeV})$	$\lambda_Y (10^{-2} \text{GeV}^5)$
$D\bar{D}_1(1^{})$	3.2 - 3.6	4.9 ± 0.1	(45-65)%	2.3	4.36 ± 0.08	3.97 ± 0.54
$D\bar{D}_1(1^{-+})$	3.5 - 3.9	5.1 ± 0.1	(44 - 63)%	2.7	4.60 ± 0.08	5.26 ± 0.65
$D^* \bar{D}_0^* (1^{})$	4.0 - 4.4	5.3 ± 0.1	(44 - 61)%	3.0	4.78 ± 0.07	7.56 ± 0.84
$D^*\bar{D}_0^*(1^{-+})$	3.8 - 4.2	5.2 ± 0.1	(44 - 61)%	2.9	4.73 ± 0.07	6.83 ± 0.84

• Int.J.Mod.Phys.A35(2021)2150107(隐粲分子态)

$Z_c(X_c)$	J^{PC}	$T^2({ m GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	$\mu(\text{GeV})$	pole	D(10)
$D^* \bar{D}^*$	0++	2.8 - 3.2	4.55 ± 0.10	1.6	(40-62)%	$\leq 1\%$
$D^* \bar{D}_s^*$	0++	2.9 - 3.3	4.65 ± 0.10	1.6	(41 - 63)%	< 1%
$D_s^* \bar{D}_s^*$	0++	3.1 - 3.5	4.75 ± 0.10	1.6	(40 - 61)%	$\ll 1\%$
$D\bar{D}^* - D^*\bar{D}$	1++	2.7 - 3.1	4.40 ± 0.10	1.3	(40-63)%	$\ll 1\%$
$D\bar{D}_s^* - D^*\bar{D}_s$	1++	2.9 - 3.3	4.55 ± 0.10	1.3	(41 - 63)%	$\ll 1\%$
$D_s \bar{D}_s^* - D_s^* \bar{D}_s$	1++	3.0 - 3.4	4.65 ± 0.10	1.3	(42 - 63)%	$\ll 1\%$
$D\bar{D}^* + D^*\bar{D}$	1+-	2.7 - 3.1	4.40 ± 0.10	1.3	(40-63)%	$\ll 1\%$
$D\bar{D}_s^* + D^*\bar{D}_s$	1+-	2.9 - 3.3	4.55 ± 0.10	1.3	(41 - 63)%	$\ll 1\%$
$D_s \bar{D}_s^* + D_s^* \bar{D}_s$	1+-	3.0 - 3.4	4.65 ± 0.10	1.3	(42 - 63)%	$\ll 1\%$
$D^* \bar{D}^*$	1+-	3.0 - 3.4	4.55 ± 0.10	1.6	(42 - 63)%	< 1%
$D^* \bar{D}_s^*$	1+-	3.2 - 3.6	4.65 ± 0.10	1.6	(41 - 61)%	$\ll 1\%$
$D_s^* \bar{D}_s^*$	1+-	3.3 - 3.7	4.75 ± 0.10	1.6	(42 - 61)%	$\ll 1\%$
$D^*\bar{D}^*$	2^{++}	3.0 - 3.4	4.55 ± 0.10	1.6	(41 - 62)%	< 1%
$D^* \bar{D}_s^*$	2^{++}	3.2 - 3.6	4.65 ± 0.10	1.6	(40-60)%	$\ll 1\%$
$D_s^* \bar{D}_s^*$	2^{++}	3.3 - 3.7	4.75 ± 0.10	1.6	(41 - 61)%	$\ll 1\%$

• Int.J.Mod.Phys.A35 (2021) 2150107; AAPPS Bull.32 (2022) 37

$Z_c(X_c)$	J^{PC}	$M_{X/Z}({ m GeV})$	Assignments
$D\bar{D}$	0++	3.74 ± 0.09	
$D\bar{D}_s$	0++	3.88 ± 0.10	
$D_s ar{D}_s$	0++	3.98 ± 0.10	? $X(3960)$
$D^*\bar{D}^*$	0++	4.02 ± 0.09	
$D^* \bar{D}_s^*$	0++	4.10 ± 0.09	
$D_s^* \bar{D}_s^*$	0++	4.20 ± 0.09	
$D\bar{D}^* - D^*\bar{D}$	1++	3.89 ± 0.09	? $X_c(3872)$
$D\bar{D}_s^* - D^*\bar{D}_s$	1++	3.99 ± 0.09	
$D_s \bar{D}_s^* - D_s^* \bar{D}_s$	1++	4.07 ± 0.09	
$D\bar{D}^* + D^*\bar{D}$	1+-	3.89 ± 0.09	? $Z_c(3900)$
$D\bar{D}_s^* + D^*\bar{D}_s$	1+-	3.99 ± 0.09	? $Z_{cs}(3985/4000)$
$D_s \bar{D}_s^* + D_s^* \bar{D}_s$	1+-	4.07 ± 0.09	
$D^*\bar{D}^*$	1+-	4.02 ± 0.09	? $Z_c(4020)$
$D^* \bar{D}_s^*$	1+-	4.11 ± 0.09	? $Z_{cs}(4123)$
$D_s^* \bar{D}_s^*$	1+-	4.19 ± 0.09	
$D^*\bar{D}^*$	2^{++}	4.02 ± 0.09	
$D^* \bar{D}_s^*$	2^{++}	4.11 ± 0.09	
$D_s^* \bar{D}_s^*$	2^{++}	4.19 ± 0.09	

• Eur.Phys.J.A58(2022)110 (双粲分子态)

T_{cc}	Isospin	$T^2(\text{GeV}^2)$	$\sqrt{s_0}(\text{GeV})$	$\mu(\text{GeV})$	pole	D(10)
D^*D^*	1	2.8 - 3.2	4.55 ± 0.10	1.7	(41 - 61)%	< 1%
$D_s^*D^*$	$\frac{1}{2}$	2.9 - 3.3	4.65 ± 0.10	1.7	(42 - 62)%	$\ll 1\%$
$D_s^*D_s^*$	Õ	3.2 - 3.5	4.80 ± 0.10	1.8	(42 - 61)%	$\ll 1\%$
$D^*D - DD^*$	0	2.9 - 3.3	4.45 ± 0.10	1.4	(42 - 62)%	$\ll 1\%$
$D^*D + DD^*$	1	2.6 - 3.0	4.40 ± 0.10	1.4	(42 - 63)%	$\ll 1\%$
$D_s^*D - D_sD^*$	$\frac{1}{2}$	3.0 - 3.4	4.50 ± 0.10	1.5	(40 - 62)%	< 1%
$D_s^*D + D_sD^*$	$\frac{\overline{1}}{2}$	2.9 - 3.3	4.50 ± 0.10	1.5	(40 - 60)%	$\ll 1\%$
$D_s^*D_s$	Õ	3.0 - 3.4	4.60 ± 0.10	1.5	(41 - 63)%	$\ll 1\%$
$D_0^* D_1 - D_1 D_0^*$	0	5.6 - 7.0	6.35 ± 0.10	4.6	(41 - 60)%	$\ll 1\%$
$D_0^* D_1 + D_1 D_0^*$	1	4.7 - 6.1	5.90 ± 0.10	4.0	(42 - 61)%	$\ll 1\%$
$D_0^* D_{s1} - D_{s0}^* D_1$	$\frac{1}{2}$	5.8 - 7.2	6.50 ± 0.10	4.6	(43 - 60)%	< 1%
$D_0^* D_{s1} + D_{s0}^* D_1$	$\frac{\overline{1}}{2}$	4.7 - 6.1	6.05 ± 0.10	4.0	(42 - 62)%	< 1%
$D_{s1}D_{s0}^{st}$	Ō	4.9 - 6.3	6.20 ± 0.10	4.0	(43 - 61)%	< 1%
$D^*D^* - D^*D^*$	0	3.2 - 3.6	4.55 ± 0.10	1.7	(42 - 61)%	< 1%
$D^*D^* + D^*D^*$	1	3.0 - 3.4	4.55 ± 0.10	1.7	(41 - 60)%	< 1%
$D_s^*D^* - D_s^*D^*$	$\frac{1}{2}$	3.3 - 3.7	4.65 ± 0.10	1.7	(40-59)%	$\ll 1\%$
$D_s^*D^* + D_s^*D^*$	$\frac{1}{2}$	3.1 - 3.5	4.65 ± 0.10	1.7	(42 - 61)%	< 1%
$D_s^* D_s^* - D_s^* D_s^*$	Ō	3.6 - 4.0	4.80 ± 0.10	1.8	(40-60)%	$\ll 1\%$
$D_s^* D_s^* + D_s^* D_s^*$	0	3.4 - 3.9	4.80 ± 0.10	1.8	(41 - 61)%	< 1%

• Eur. Phys. J. A58 (2022) 110; AAPPS Bull.32 (2022) 37

T_{cc}	J^P	$M_T({ m GeV})$	Assignments
DD	0^{+}	3.75 ± 0.09	
$D_s D$	0^{+}	3.85 ± 0.09	
$D_s D_s$	0^{+}	3.95 ± 0.09	
D^*D^*	0^{+}	4.04 ± 0.11	
$D_s^*D^*$	0^{+}	4.12 ± 0.10	
$D_s^* D_s^*$	0^{+}	4.22 ± 0.10	
$D^*D - DD^*$	1+	3.88 ± 0.11	? $T_{cc}(3875)$
$D_s^*D - D_sD^*$	1^{+}	3.97 ± 0.10	
$D^*D + DD^*$	1+	3.90 ± 0.11	
$D_s^*D + D_sD^*$	1+	3.98 ± 0.11	
$D_s^*D_s$	1^{+}	4.10 ± 0.12	
$D^*D^* - D^*D^*$	1^{+}	4.00 ± 0.11	
$D_{s}^{*}D^{*} - D_{s}^{*}D^{*}$	1^{+}	4.08 ± 0.10	
$D_s^*D_s^*$	1^{+}	4.19 ± 0.09	
$D^*D^* + D^*D^*$	2^{+}	4.02 ± 0.11	
$D_s^*D^* + D_s^*D^*$	2^{+}	4.10 ± 0.11	
$D_s^*D_s^*$	2^{+}	4.20 ± 0.10	

7 总结

利用QCD求和规则计算四夸克态、分子态的量谱,比较成功。几乎可以协调再现所有XYZ粒子质量。宽度计算基于严格对偶(详细计算):
 Eur.Phys.J.C78(2018)14; Eur.Phys.J.C79(2019)184

四夸克态的容纳能力远远大于分子态的容纳能力。

对于含P波组分的分子态,目前的计算需要改进,更需要高能物理实验数据支持。