

Search for Strange Dibaryons with Baryon Correlations at $\sqrt{s_{NN}} = 200$ GeV in Nuclear Collisions

Kehao Zhang (张珂豪) Central China Normal University <u>khzhang@mails.ccnu.edu.cn</u>

<u>STAR区域研讨会,中国重庆,Oct.10th - 15th, 2024</u>

2024/10/14

Outline

- Motivation
- Femtoscopy & Correlation Function
- RHIC-STAR Experiment & Analysis Details
- Lednicky-Lyuboshitz model

-**>>>**

- Results
 - $|S| = 2: p \Xi & A A$ correlation
 - $|S| = 3: p \Omega$ correlation
- Summary & outlook

Motivation

• (Strange) Dibaryons, have never been found experimentally

Particle	Mass	Quark com-	Decay mode
	(MeV)	position	
f_0	980	q ar q s ar s	$\pi\pi$
a_0	980	q ar q s ar s	$\pi\eta$
K(1460)	1460	q ar q q ar s	$K\pi\pi$
$\Lambda(1405)$	1405	$\mathrm{qqqs}ar{q}$	$\pi\Sigma$
$\Theta^{+}(1530)$	1530	${ m qqqq}{ m s}$	KN
Η	2245	uuddss	$\Lambda\Lambda$
$N\Omega$	2573	qqqsss	$\Lambda \Xi$
[I] [I]	2627	qqssss	$\Lambda \Xi$
$\Omega\Omega$	3228	SSSSSS	$\Lambda \mathrm{K}^-{+}\Lambda \mathrm{K}^-$

- The possible channel: H-Dibaryon $\Leftrightarrow p + Ξ$ H-Dibaryon $\Leftrightarrow Λ + Λ$ NΩ Dibaryon $\Leftrightarrow N + Ω$
- Hyperon-Nucleon (Y-N) and Hyperon-Hyperon (Y-Y) interactions provide important information to constrain the Equation-of-State and help to understand the inner structure of compact stars

Experiment measurements are needed !

2024/10/14

Phys. Rev. C 84, 064910 (2011)

Motivation

- <u>Momentum correlation (Femtoscopy)</u>, a powerful tool to study strong interaction and to search possible bound state
- At top RHIC energy, large amount of hyperons are produced, provide opportunity to study various Y-N/Y-Y correlations

Phys. Rev. C 84, 064910 (2011)

Femtoscopy

2024/10/14

- Just consider strong interaction
- $C(k^*)$ shape: related to interaction

RHIC-STAR Experiment

2024/10/14

Analysis details

➢ Dataset:

Isobar collisions (Ru+Ru, Zr+Zr) @ 200 GeV

 \sim 4 billion minimum-bias events

Au+Au collisions @ 200 GeV (run11, run14, run16)

 ~ 2 billion minimum-bias events

- > Hyperon reconstruction via Helix-swimming method $\Lambda \rightarrow p + \pi^{-}$, BR = 63.9% $\Xi^{-} \rightarrow \Lambda + \pi^{-} \rightarrow p + \pi^{-} + \pi^{-}$, BR = 99.9% $\Omega^{-} \rightarrow \Lambda + k^{-} \rightarrow p + \pi^{-} + k^{-}$, BR = 67.8%
- ➢ High purity achieved in selected kinetic region
 (p_T: [0.6, 3.0] GeV/c, |y| < 0.7)

8

Correlation function

<u>Experimental</u>

 $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$

- Count the correlated pairs in same-event and un-correlated pairs in mixed-event
- Normalize range: typically far away from signal region, $k^* > 200 \text{ MeV/c}$
- Need to be corrected by: detector effect, feed-down effect (backup)

Lednicky-Lyuboshitz (L-L) Model

Lednicky-Lyuboshitz (L-L) Model

• Correlation function:

$$C(\boldsymbol{k}^*) = \int d^3 r^* S(\boldsymbol{r}^*) |\Psi(\boldsymbol{r}^*, \boldsymbol{k}^*)|^2$$

• Scattering amplitude (without Coulomb):

$$f_0(k^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0k^{*2}\right]^{-1}$$

• Scattering amplitude (with Coulomb):

$$f_0(k^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - \frac{2}{a_c}h(\eta) - ik^*A_c(\eta)\right]^{-1}$$

• Different spin states:

$$C = w_i C_i + w_j C_j$$

 f_0 : scattering length d_0 : effective range a_c : Bohr radius, $\eta = (k^* a_c)^{-1}$ A_c , h: Coulomb interaction

R. Lednicky, et al. Sov.J.Nucl.Phys.35(1982)770

2024/10/14

11

☆ Measure p-E⁻ CFs at 200 GeV in Au+Au and Isobar collisions

New results

 $\stackrel{\mbox{\tiny $\stackrel{$\sim$}$}}{\sim}$ CFs show enhancement at low k*

☆ Simultaneously fit with L-L function for different centralities in each collision system to extract R_G , f_0 and d_0 by Bayesian method

☆ UrQMD + HAL QCD model is consistent with data

O Particle phase space provided by UrQMD

Interaction potential provided by HALQCD

2024/10/14

 $p - \Xi^-$ Correlation (|S| = 2)

 $\Leftrightarrow \text{Centrality dependence: } R_G^{central} > R_G^{peripheral}$

 $\Rightarrow R_G$ increase as charged multiplicity increase for these collisions

 $\Rightarrow R_G$ from Au+Au and Isobar collisions follow a linear trend

☆ Consistent results obtained from UrQMD model

 $p - \Xi^-$ Correlation (|S| = 2)

- ☆ First experimental measurements in heavy-ion collisions of strong interaction parameters in $p-\Xi^$ pairs
- $\Rightarrow f_0$ and d_0 are consistent with those extracted from UrQMD + HAL QCD model within 1sigma

2024/10/14

STAR区域研讨会 -- Kehao Zhang -- CCNU

 $p-\Xi^{-}$ correlation

STAR Preliminary

Ru+Ru, 200 GeV

Zr+Zr, 200 GeV

Au+Au, 200 GeV

1.5

New results

⇒ STAR published Λ - Λ correlation functions at 200 GeV in Au+Au collisions with run10 + run11 data ⇒ With L-L fit, a negative f_0 was found which indicated a repulsive interaction

 \Rightarrow However, the published data was NOT corrected for feed-down which will strongly affect the sign of f_0

 Λ - Λ Correlation (|S| = 2)

- ⇒ Re-do Λ-Λ correlation functions with high statistics data (2 billion)
 ⇒ Consistent between two results
 ⇒ Still suffer from large uncertainties
- \Rightarrow Isobar collisions have ~ 4 billion statistics
 - \Rightarrow Able to measure different centralities
 - ⇒ Able to extract the strong interaction parameter more precisely
 - \Rightarrow Will release new results on QM2025

STAR Coll, Phys.Rev.Lett, 114(2015) 022301 EPJ Web of Conferences 259, 11015 (2022) $p - \Omega^-$ Correlation (|S| = 3)

⇒ STAR published p- Ω correlation functions at 200 GeV in Au+Au collisions with run11 + run14 data ⇒ Compared with the model qualitatively

Phys. Lett. B 790 (2019) 490

STAR区域研讨会 -- Kehao Zhang -- CCNU

 Ω^{-}

 $p - \Omega^-$ Correlation (|S| = 3)

Spin-2 pOmega potentials	VI	VII	VIII
Binding energy E_B (MeV)	-	6.3	26.9
Scattering length a_0 (fm)	-1.12	5.79	1.29
Effective range r_eff (fm)	1.16	0.96	0.65
	No bound state	Shallow bound	Deep bound

⇒ Small (40-80%) to large (0-40%) system ratio can largely cancel Coulomb effect

 \Rightarrow Data supports the existence of a bound state

⇒ New measurements in Isobar collisions willprovide more precise results

 \Rightarrow Will release new results on QM2025

Phys. Lett. B 790 (2019) 490

2024/10/14

- ✓ Femtoscopy measurements from heavy-ion collisions provides a unique tool to explore Y-N and Y-Y interactions
- ✓ Measure $p \Xi$ CF at 200 GeV in Au+Au and Isobar collisions
 - ✓ Extract source size: $R_G^{central} > R_G^{peripheral}$
 - ✓ Extract a positive f_0 : Attractive interaction in p Ξ[−] pairs and no sign of the H-Dibaryon
- ✓ STAR published $\Lambda \Lambda$ and $p \Omega$ CF at 200 GeV in Au+Au collisions
 - Due to large uncertainties, no definitive conclusions can be drawn regarding on the H-dibaryon or NΩ-Dibaryon search

Outlook

Outlook:

2024/10/14

-}}

Corrections (I)

 Track merging / splitting effect: Possible merging/splitting track pair:

2024/10/14

STAR区域研讨会 -- Kehao Zhang -- CCNU

-**>>>**

STAR区域研讨会 -- Kehao Zhang -- CCNU

2024/10/14

