

Statistical Production of B_c Mesons in Pb-Pb Collisions at the LHC energy

Based on S. Zhao & MH, arXiv:2407.05234

Min He (何敏)

Nanjing Univ. of Sci. & Tech., Nanjing, China

Charmonium, bottomonium & B_c mesos

• Heavy quark $m_Q >> \Lambda_{QCD}$ $m_c \sim 1.5 \text{ GeV}, m_b \sim 4.5 \text{ GeV}$

Heavy quarkonium vs open bottom hadrons: B_c taking a two-fold role ٠

Non-relativistic potential model & spectroscopy

• Heavy quarkonium bound states below open DD, BB, DB threshold

$$[2m_Q-rac{
abla^2}{m_Q}+V(r)]\psi_i(r)=M_i\psi_i(r)$$

• Cornell + spin-dependent potential $V(r) = -\frac{\kappa}{r} + \frac{r}{a^2}$

$$=\frac{\sigma_Q\cdot\sigma_{\bar{Q}}}{6m_Q^2}\nabla^2 V_V(r) \qquad V_{LS}(r)=\frac{L\cdot S}{2m_Q^2 r}\left(3\frac{dV_V}{dr}-\frac{dV_S}{dr}\right)$$

Eichten et al., RMP '05

 $V_{SS}(r)$

Eichten & Quigg., '94 & '19

Charmonium

Bottomonium

B_c mesons 14 states below DB threshold

Decay widths of B_c's below DB threshold

- Open charm-bottom → annihilation into gluons forbidden (vs hidden c/b quarkonium)
- Radiative decay & hadronic cascades
 - EM E1 transition $\Gamma_{E1}(i \to f + \gamma) = \frac{4\alpha \langle e_Q \rangle^2}{27} k^3 (2J_f + 1) |\langle f|r|i \rangle|^2 S_{if}$
 - EM M1 transition $\Gamma_{M1}(i \to f + \gamma) = \frac{16\alpha}{3} \mu^2 k^3 (2J_f + 1) |\langle f|j_0(kr/2)|i\rangle|^2$ • Color E1-E1 transition $\downarrow^{\text{Light}}_{\text{total one}} = \downarrow^{\text{Light}}_{\text{total one}} = \downarrow^{\text{Lig$
 - → All B_c 's below DB threshold end up in the pseudoscalar ground state $B_c(1^1S_0)$ 100%!

Decay mode	k_{γ} (keV)	Branching fraction (%	
	$1^{1}S_{0}$ (6275): Weak decays		
	$1^{3}S_{1}$ (6329): $\Gamma = 0.144$ keV		
$1^{1}S_{0} + \gamma$	54	100	
	$2^{3}P_{0}$ (6692): $\Gamma = 53.1$ keV		
$1^{3}S_{1}$ (6329)	354	100	
	2^1S_0 (6866): $\Gamma = 73.1$ keV		
$1^{1}S_{0} + \pi\pi$		81.1	
$2P'_1$ (6738)	126	16.5	
$2P_1$ (6730)	134	2.24	

Production of B_c in pp collisions

B_c⁻ vs **B**⁻ fragmentation fractions in pp @ LHC

Production fractions: B_c VS B ٠

M.He@NUST

Major uncertainty from Br($B_c \rightarrow J/\psi + \mu + \nu$)=(1.95±0.46)%

•
$$B_c^{-/}(B^- + B^0 bar) = \frac{f_c}{f_u + f_d} = (3.63 \pm 0.08 \pm 0.12 \pm 0.86) \times 10^{-3}$$

B_c⁻ vs **B**⁻ cross section in 5 TeV pp @ LHC

- Production ratio insensitive to energy $\rightarrow d\sigma(B_c^-) = d\sigma(B^-) * f_c/f_u @ 5TeV \rightarrow baseline for Pb-Pb$
- $d\sigma(B_c^{-})/dy=0.104\pm0.0245\,\mu b$ & $f_c=0.00258\pm0.00062$ @ 5 TeV

M.He@NUST

• CMS: BF=Br($B_c \rightarrow J/\psi + \mu + \nu$)*Br($J/\psi \rightarrow \mu + \mu$) & $p_T(\mu\mu\mu)=0.855*p_T(B_c)$

B_c production in Pb-Pb collisions @ LHC

- dN^{ccbar}/dy~20 & dN^{bbbar}/dy~1 for central collisions
- c & b quarks diffusing & thermalizing in QGP via rescatterings
 → especially low p_T c quarks near-fully thermalized

- Abundance + softening facilitating recombination b+cbar→B_c
 Quarkonium transport: Thews et al. '00; Zhuang et al.,'13, '22; Rapp et al. '24
- Implemented stochastically \rightarrow statistical hadronization

Statistical production of heavy hadrons in Pb-Pb

• Canonical ensemble partition function: strict conservation of c & b number

$$Z(C,B) = \lambda_Q \lambda_N \lambda_S \frac{1}{(2\pi)^2} \int_0^{2\pi} d\phi_C d\phi_B e^{i(C\phi_C + B\phi_B)}$$
$$\times \exp[\sum_j \gamma_s^{N_{sj}} \gamma_c^{N_{cj}} \gamma_b^{N_{bj}} e^{-i(C_j \phi_C + B_j \phi_B)} z_j],$$

Heavy hadron primary yield

chemical factor <1: canonical suppression for c and b hadrons

- Strangeness γ_s =1 but γ_c & γ_b by balance equation: c/b conservation through hadronization

$$\frac{dN_{c\bar{c}}}{dy} = \sum_{j\in oc^+} \langle N_j \rangle + \sum_{j\in hc} \langle N_j \rangle + \sum_{j\in B_c^+} \langle N_j \rangle$$
$$\frac{dN_{b\bar{b}}}{dy} = \sum_{j\in ob^+} \langle N_j \rangle + \sum_{j\in hb} \langle N_j \rangle + \sum_{j\in B_c^+} \langle N_j \rangle$$

Input c/b-hadron spectrum & c/b fugacities

- PDG: 5 B, 4 B_s, 5 Λ_b, 2 Σ_b, 4 Ξ_b, 1 Ω_b
 RQM: 25 B, 20 B_s, 30 Λ_b, 46 Σ_b, 75 Ξ_b, 42 Ω_b
 - → "Missing" states/baryons essential for explaining Λ_b/B, Λ_c/D enhancement

• $\gamma_c \& \gamma_b$ vs centrality

	0-20%	20-40%	40-60%	60-80%
$V_{\Delta y=1} (\text{fm}^3)$ $\frac{dN_{c\bar{c}}/dy}{dN_{b\bar{b}}/dy}$	4170 17.2 0.74	$ 1849 \\ 6.46 \\ 0.272 $	$709 \\ 2.15 \\ 0.0806$	200 0.44 0.0165
$\gamma_c \ \gamma_b$	$\begin{array}{c} 13.35\\ 6.27\cdot 10^7\end{array}$	$11.58 \\ 7.59 \cdot 10^7$	$10.87 \\ 1.03 \cdot 10^8$	$\frac{11.84}{1.62 \cdot 10^8}$

STAR Regional Meeting, Chongqing University, Oct.13 2024

B_c mesons yields & fractions

• Total ground-state yields $\langle N_{\alpha}^{\text{tot}} \rangle = \langle N_{\alpha} \rangle + \sum \langle N_j \rangle \cdot \mathcal{B}(j \to \alpha)$

			Ĵ				
dN	d/dy	0-20%	20-40%	40-60%	60-80%		
B^- \bar{B}^0	$(=\bar{B}^0)$	0.23234 0.097318	$0.085594 \\ 0.035851$	0.025373 0.010628	0.0051834 0.0021711		
Λ_b^0	_	0.11664	0.042969	0.012738	0.0026021	$\Lambda_{\rm b}/B\sim0.5$ reproducing grand-	 2
$\frac{\Xi_b}{\Omega_b^-}$		0.061520 0.0031317	0.022664 0.0011537	0.0067183 0.00034199	0.0013725 0.000069866		
B_c^-	/D-	0.010001	0.0031222	0.00080467	0.00012052	_	
B_c $B_c^- = B_c^-$	$b\bar{b}$	0.043056 0.013276	0.036489 0.011275	0.031724 0.009817	0.02326 0.00722		

- B_c placed as a member of open b-hadron family, instead of quarkonium
 → predictions for its production fraction from b-conservation
- B_c⁻/B⁻ ~ 0.043 vs 0.0079 (pp), f_c=B_c⁻/bbbar ~ 0.013 vs 0.00258 (pp)
 → ~ 5x enhancement: statistical recombination in deconfined QGP!
- Central \rightarrow peripheral: $f_c \lor$ from canonical suppression due to strict c-conservation!

B_c mesons p_T -differential yield

• Converting B_c yield into p_T spectrum via Resonance Recombination Model

STAR Regional Meeting, Chongqing University, Oct.13 2024

B_c vs **B**: ratio & nuclear modification factor

 B_c⁻/B⁻: ~ 5x enhancement at low p_T in Pb-Pb vs pp, but converging at high p_T R_{AA}(B_c⁻) ~ 5-6 at low p_T vs R_{AA}(B⁻) ~1 but converging at high p_T

Confronting CMS data

CMS PRL128(2022)252301: BF=Br($B_c \rightarrow J/\psi + \mu + v$)*Br($J/\psi \rightarrow \mu + \mu$) & $p_T(\mu\mu\mu)=0.855*p_T(B_c)$

- Normalized p_{T} differential yield well reproduced
- ~50% enhancement (R_{AA} ~1.5) in the lower p_T bin well captured
- Enhancement diminishing in peripheral: canonical suppression of statistical production

Summary & outlook

- Recombination of abundant & near-thermalized c & b quarks
 → statistical production of B_c mesons
- B_c treated as a member of the family of open b hadrons
 → 5x enhancement of f_c & B_c⁻/B⁻ & R_{AA} predicted at low p_T
- Awaiting exp data pushed down to p_T~0
 → to confirm statistical recombination production of B_c mesons
- Measurements & model calculations of v₂
- → strong evidence of formation of a deconfined QCD medium -- QGP!

Back-up: B_c production at Z-factory VS in pp

Gluon-gluon fusion mechanism dominant

Subprocess: $gg \rightarrow B_c + c + \overline{b}$

- 36 Feynman diagrams for complete calculations The information about the accompany quark-jets interests experimentalists
- This is t-channel gg
- Can also be s-channel gg/qqbar annihilation into b-bbar ?
 - bbar-c can be in color-octet first
 and then transition into singlet
 Bc meson via gluon radiation,
 like NRQCD ?

The key point is the hard gluon & it can be QCD factorized as indicated by the figure.

PRD46, (1992) 3845; PLB284, (1992) 127; PRD93 (2016) 034019