Measurements of Light Nuclei Femtoscopy at High Baryon Density

Ke Mi (米柯) Central China Normal University

STAR区域研讨会

2024年10月10-15日, 重庆, 中国

<u>14th Oct, 2024</u>

Outline

- 2. Lednicky-Lyuboshitz (L-L) Model
- 3. Motivation
- 4. STAR Experiment
- 5. Results
 - p-d, d-d correlation at 3 GeV
 - **d**- Λ correlation at 3 GeV
- 6. Summary & Outlook

1. Femtoscopy and Two-particle Correlation Function

⇒ Femtoscopy is inspired by Hanbury Brown and Twiss (HBT)

interferometry, but different scale (~several fm)

→ Spatial and temporal extent of emission source → Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

> Nature 178 1046-1048(1956) ALICE Coll. Nature 588, 232–238 (2020)

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^2$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum \vec{r} : relative distance

⇒ Femtoscopy is inspired by Hanbury Brown and Twiss (HBT)

interferometry, but different scale (~several fm)

→ Spatial and temporal extent of emission source → Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

<u>Experimental</u>

$$3\vec{r} = \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

Nature 178 1046-1048(1956) ALICE Coll. Nature 588, 232–238 (2020)

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum \vec{r} : relative distance

⇒ Femtoscopy is inspired by Hanbury Brown and Twiss (HBT)

interferometry, but different scale (~several fm)

→ Spatial and temporal extent of emission source → Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum \vec{r} : relative distance

⇒ Femtoscopy is inspired by Hanbury Brown and Twiss (HBT)

interferometry, but different scale (~several fm)

→ Spatial and temporal extent of emission source → Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

Femtoscopy — Lednicky-Lyuboshitz approach

<u>Experimental</u>

 $N_{same}(k^*)$ $N_{mixed}(k^*)$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum

R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

Femtoscopy — Lednicky-Lyuboshitz approach

<u>Experimental</u>

 $N_{same}(k^*)$ $N_{mixed}(k^*)$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum

Physics quantity:

- R_G: Spherical Gaussian source size
- f₀: Scattering length
- d_0 : Effective range

R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

Motivation

- Formation mechanism of light nuclei are under debate
 ⇒ Coalescence : final-state interaction
 - ⇒ Thermal : produced directly from fireball
- Indirect approach of three-body and four-body interactions

J.Cleymans et al, Phys.Rev.C 74, 034903 (2006) K. Blum et al, Phys.Rev.C 99, 04491 (2019) St. Mrówczyński and P. Słoń, Acta Physica Polonica B 51, 1739 (2020) St. Mrówczyński and P. Słoń, Physical Review C 104, 024909 (2021)

2024/10/14

Motivation

- Formation mechanism of light nuclei are under debate \Rightarrow Coalescence : final-state interaction
 - ⇒ Thermal : produced directly from fireball
- Indirect approach of three-body and four-body interactions
- Role of Nucleon-Nucleon (N-N) and Hyperon-Nucleon (Y-N) interactions in the Equation-of-State \Rightarrow Inner structures of neutron star ⇒ Light nuclei + hyperon: provide the insights to hypernuclei

structure and properties

Thin atmosphere: H, He, C,... Outer crust: ions, electrons Inner crust: ion lattice, Inner core? soaked in superfluid neutrons (SFn) **Outer core liquid**: e^{-} , μ^{-} , SFn, superconducting protons **Inner core**: hyperons? quarks? unknown 12-15? km -~10¹⁵ g cm⁻³ ~10 km ~2×nuclear density 0.5 km $2 \times 10^{14} \,\mathrm{g}\,\mathrm{cm}^{-3}$ ~nuclear density 0.1 km 4×10¹¹ g cm⁻³ 'neutron drip'

Phys.Rev.C 99, 064905 (2019)

Motivation

- Formation mechanism of light nuclei are under debate \Rightarrow Coalescence : final-state interaction
 - ⇒ Thermal : produced directly from fireball
- Indirect approach of three-body and four-body interactions
- Role of Nucleon-Nucleon (N-N) and Hyperon-Nucleon (Y-N) interactions in the Equation-of-State \Rightarrow Inner structures of neutron star ⇒ Light nuclei + hyperon: provide the insights to hypernuclei

structure and properties

Outer crust: ions. electrons **Thin atmosphere**: H, He, C,... Inner crust: ion lattice, Inner core? soaked in superfluid neutrons (SFn) **Outer core liquid**: e^- , μ^- , SFn, superconducting protons **Inner core**: hyperons? quarks? unknown 12-15? km -~10¹⁵ g cm⁻³ ~10 km ~2× nuclear density 0.5 km $2 \times 10^{14} \,\mathrm{g}\,\mathrm{cm}^{-3}$ ~nuclear density 0.1 km 4×10¹¹ g cm⁻³ 'neutron drip'

In this talk:

p-d, d-d, d- Λ correlation @ 3 GeV

Phys.Rev.C 99, 064905 (2019)

STAR Detector & Datasets

⇒ Excellent particle identification

⇒ Large, uniform acceptance at mid-rapidity

2024/10/14

⇒ 0-60% centrality

Particle Identification & Reconstruction

 \Rightarrow Reconstruct Λ candidates with KFParticle package -> Improve significance

2024/10/14

$\Rightarrow \pi^{-}$, p and d are identified by Time Projection Chamber (TPC) and Time-Of-Flight (TOF)

Phys. Lett. B 827 (2022) 136941

Results — p-d, d-d Correlation

2024/10/14

 \Rightarrow First measurements of p-d/d-d correlation functions in HIC

⇒ Clear depletion in low k*

Coulomb repulsive & strong interaction

⇒ Fitted with L-L model simultaneously,

assuming in different centrality:

- Different R_G
- **Common** f_0 and d_0

STAR: arXiv:2410.03436v1 SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905 Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905

Results — p-d, d-d Correlation

2024/10/14

⇒ Simulated with SMASH model, consider two deuteron formation mechanism:

Direct production

- Hadronic scattering
- Fail to describe data at certain k*

Coalescence production

- Wigner function
- Well description to data
- **Coalescence is the dominant process** for deuteron formation in the highenergy nuclear collisions

STAR: arXiv:2410.03436v1 SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905 Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905

Results — p-d, d-d Correlation

2024/10/14

STAR: arXiv:2410.03436v1

Results — p-d, d-d Interaction

2024/10/14

- \Rightarrow For both p-d and d-d interaction, the spin-averaged
- f₀ is negative
 - Combination of repulsive interactions in quartet (quintet) spin state for p-d (d-d) along with the presence of bound states (³He for p-d and ⁴He for d-d)
- ⇒ For p-d interaction, the result is consistent with theory calculation and low-energy scattering experiment measurement
 - Support the feasibility of extracting interaction parameters with Femtoscopy technique

STAR: arXiv:2410.03436v1

Results — d- Λ **Correlation**

 \Rightarrow Strong enhancements at small k^* range -> Attractive interactions

- \Rightarrow Simultaneously fit to data in different centralities with L-L approach

* Λ feed-down correction not applied

2024/10/14

First measurement of d- Λ **CF at STAR**

Consider two-spin components: D (doublet, S = 1/2), Q (quartet, S=3/2)

EPJ Web Conf. 296 (2024) 14010

Results — d- Λ **Correlation**

2024/10/14

 $\circ < m_T >$ dependence: $R_G(p - \Lambda) > R_G(d - \Lambda)$

EPJ Web Conf. 296 (2024) 14010

Results — d- Λ **Interaction**

2024/10/14

- ⇒ First experimental extraction of strong interaction parameters of d- Λ
- ⇒ Successfully separate two spin components in d-Λ f_0 (D) = -20 $^{+3}_{-3}$ fm, d_0 (D) = 3 $^{+2}_{-1}$ fm f_0 (Q) = 16 $^{+2}_{-1}$ fm, d_0 (Q) = 2 $^{+1}_{-1}$ fm
 - Negative f_0 in doublet state -> ${}^3_{\Lambda}$ H bound state • Positive f_0 in quartet state -> Attractive interaction

EPJ Web Conf. 296 (2024) 14010
H. W. Hammer, Nucl. Phys. A 805 (2002) 173
Cobis, et al. J. Phys. G 23 (1997) 401
J. Haidenbauer, Phys. Rev. C 102 (2020) 3, 034001
F. Wang, et al, Phys. Rev. Lett. 83 (1999) 3138
M. Schafer, et al, Phys. Lett. B 808 (2020) 135614
G. Alexander, et al. Phys. Rev. 173 (1968) 1452
J. Haidenbauer, et al. Nucl. Phys. A 915 (2013) 24

Results — ${}_{\Lambda}^{3}$ H **Binding Energy**

2024/10/14

and from
$$\Rightarrow {}^{3}_{\Lambda}$$
 H binding energy (B _{Λ}):
Bethe formula from Effective Range Expansion (EF
B _{Λ} = $\frac{\gamma^{2}}{2\mu_{d\Lambda}}$ $\frac{1}{-f_{0}} = \gamma - \frac{1}{2}d_{0}\gamma^{2}$
 $\mu_{d\Lambda}$: reduced mass
 γ : binding momentum
70

68
$$\Rightarrow {}^{3}_{\Lambda}H B_{\Lambda} = [0.04, 0.33] (MeV) @ 95\% CL$$

-> Consistent with the world average

 \Rightarrow Open a new way to constrain $^{3}_{\Lambda}$ H properties

EPJ Web Conf. 296 (2024) 14010 H.Bethe, Phys.Rev 76, 38 (1949)

K.Mi — CCNU — STAR区域研讨会

Im

Summary & Outlook

- ⇒ Femtoscopy measurements from heavy-ion collisions provides
- a unique tool to explore strong interactions and evolution dynamics
- \Rightarrow N-N interaction (p-d & d-d)
 - First measurements of p-d / d-d correlation functions in STAR
 - Coalescence is the dominant process for deuteron formation in the high-energy nuclear collisions
 - f_0 is consistent with repulsive interaction and bound state formation in p-d / d-d pair
- \Rightarrow Y-N interaction (d- Λ)
 - First experimental measurements of f_0 and d_0 in d- Λ pairs
 - Provide a new way to explore hyper-nuclei properties

Summary & Outlook

⇒ Femtoscopy measurements from heavy-ion collisions provides

a unique tool to explore strong interactions and evolution dynamics

2024/10/14

2024/10/14

p-p, p- Λ correlation functions @ 3 GeV

