Measurement of photon-induced J/ψ azimuthal anisotropy in isobar collisions at STAR Kaiyang Wang 王恺扬 (kaiyangwang@mail.ustc.edu.cn) 2024. 10. 13 University of Science and Technology of China

STAR

- Introduction: "polarized γ + A collider"
- Photon polarization and alignment with impact parameter
- Spin interference effect
- Summary

Photon-induced process

Equivalent Photon Approximation

 \succ EM fields \rightarrow a flux of quasi-real photons

$$n \propto \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \approx |\vec{E}|^2 \approx |\vec{B}|^2$$

 \succ Flux \propto Z²

Photon-Nucleus collider"
γ + A → J/ψ + A
Distinctly peaked at very low p_T

AR

Photon-induced J/ ψ production

Ultra-Peripheral Collisions

Peripheral Collisions

\checkmark Coherent photon-induced interactions could explain the low p_T J/ ψ yields

Linearly polarized photons

- Linearly polarized photons
- Polarization vector is radially

outward along the emitting source

STAR, Phys. Rev. Lett. 127, 052302 (2021)

- $> \cos 4\Delta \phi$ modulation via $\gamma \gamma \rightarrow e^+e^-$
- Confirmed the linearly polarization of photons

➢ How about Vector Meson production? γ + A → J/ψ + A

STAR experiment

 ✓ BEMC: Particle identification, trigger

✓ TOF: Time of flight, particle identification

✓ TPC: Tracking, momentum and dE/dx

Polarized Photon-Nucleus collider

- > $\Delta \phi [(\vec{e}^+ \vec{e}^-), \Psi_{EP}^{2nd}]$ $\phi (\vec{e}^+ - \vec{e}^-)$ is in J/ ψ rest frame, Ψ_{EP}^{2nd} : second order TPC event plane
- J/ψ polarization could originate from linear polarization and geometry

Raw signal

- \succ Clear J/ ψ peak from invariant mass spectrum
- > Negative A₂ ($\langle Cos[2(\Delta \varphi)] \rangle$) @ $p_T^{ee} < 0.2 \text{ GeV/c}$ (photon induced production dominant)
- > A₂ Consistent with 0 @ $p_T^{ee} > 0.2$ GeV/c (hadronic process dominant)

p_T spectrum

- ➤ Hadronic yield
 - $p_T^{ee} > 0.2 \text{ GeV/c}$ fitted with Tsallis function
 - Extrapolated to $p_T^{ee} < 0.2 \text{ GeV/c}$
- Photon-induced yield
 - $p_T^{ee} < 0.2 \text{ GeV/c}$ excess yield w.r.t hadronic yield extrapolation

> Assuming A_2 from hadronic process is 0

$$\checkmark A_2^{\text{photon}} = A_2^{\text{meas}} \times \frac{\text{Yield}_{\text{photon}}}{\text{Yield}_{\text{total}}}$$

A₂ vs. centrality

X. Wu et al. Phys. Rev. Res. 4, L042048 (2022)

► For 30%~80%, $p_T^{ee} < 0.2 \ GeV/c$ Measured A₂ -0.28 ± 0.08 (stat.) ± 0.03(sys.) ~3.3 σ Photon-induced A₂ after subtracting the hadronic contribution -0.39 ± 0.11 (stat.) ± 0.04(sys.)

- Photon-induced A₂ agrees with EPA-VMD model prediction
- > No obvious centrality dependence

 A_2 vs. p_T

- ➢ No obvious p_T dependence for photon induced A_2
- Evidence of decay anisotropy from photon polarization and initial geometry
- ✓ Direct measurement of photon polarization
- ✓ Accessing collision geometry

Spin interference effect

Spin interference effect for J/ψ

J. D. Brandenburg etal., Phys. Rev. D 106, 074008 (2022)

How about J/ψ ?

Decay daughters, e⁺e⁻ are fermions
 Longer lifetime than impact parameter

 $\rho^0 \sim 1.3 \text{ fm/c}$ J/ $\psi \sim 2160 \text{ fm/c}$ b ~ 20 fm

➢ Internal photon radiation

J/ψ measurements in isobaric UPCs

≻ Measured $\gamma A \rightarrow J/\psi \rightarrow e^+e^-\&\gamma\gamma \rightarrow e^+e^-$ (in the mass continuum) within |y| < 1

 \geq Signal extractions are performed via fitting to the M_{ee} & p_T distributions

AR

J/ψ spin interference signal extraction

$$A_{2}^{raw} = \frac{N_{J/\psi} \times A_{2}^{J/\psi} + N_{\gamma\gamma} \times A_{2}^{\gamma\gamma}}{N_{J/\psi} + N_{\gamma\gamma}}$$

$$A_{2}^{J/\psi} = \left(1 + \frac{N_{\gamma\gamma}}{N_{J/\psi}}\right) \times A_{2}^{raw} - \left(\frac{N_{\gamma\gamma}}{N_{J/\psi}}\right) \times A_{2}^{\gamma\gamma}$$

$$N_{\gamma\gamma} \& N_{J/\psi} : \text{From fitting of } M_{ee} \text{ spectrum}$$

$$A_{2}^{\gamma\gamma} : \text{Extrapolated from } M_{ee} \in [1.8, 2.6] \cup [3.2, 4.0] \text{ GeV/c}^{2}$$

 \checkmark Sizeable contributions from $\gamma\gamma \rightarrow e^+e^-$ process

✓ Possible variations for $A_{2\phi}$ in the mass continuum has been considered as systematics

✓ Enhancement on left side of J/ ψ peak → Bremsstrahlung & soft photon radiation

p_T -dependent spin interference of J/ ψ

✓ J/ ψ signal shows an increasing trend with p_T from negative to positive values ➤ MC with soft photon radiation well describes increase trend @ $p_T > 0.1 \ GeV/c$ ➤ 2.4 σ lower than MC with zero modulation input @ $p_T < 0.06 \ GeV/c$

Summary

- > Global polarization for photon-induced J/ ψ
 - Evidence of significant decay anisotropy from photon polarization and initial geometry
 - \checkmark Direct measurement of photon polarization
 - ✓ A novel tool to test the correlation between initial geometric conditions and hadronic collective behaviors
- > Spin interference measurement in isobaric UPC
 - ✓ Strong p_T dependence
 - $\checkmark~2.4~\sigma$ negative modulation @ $p_T < 0.06~GeV/c$

