

J/ψ photoproduction in ultra-peripheral collisions

• UPC introduction : γ + A collider

- Motivation : Gluon structure with coherent J/ψ
- Cross-section of coherent J/ ψ in Au +Au collision at STAR.
- Photon energy ambiguity.
- Data processing
- Signal reconstruction with different rapidity and neutron multiplicity
- Efficiency extraction.
- Summary

• Equivalent Photon Approximation

- Proposed in 1924 by Fermi (1901-1954)
 - On the theory of collisions between atoms and elastically charged particles
- Extended EPA method to relativistic particles by Williams&Weiszsacker
- Photon Flux $\propto Z^2$

Photon kinematics

maximum energy Ε _{γ,max} ~γ(ħc/R)	80 GeV in Pb+Pb@LHC 3 GeV in Au+Au@RHIC		
typical p⊤ (& virtuality) р т _{max} ~ ħc/R	O(30) MeV @ RHIC & LHC		
Coherent strengths (rates) scale as Z ² : nuclei >> protons	Flux of photons on other nucleus ~ Z^2 , flux of photons on photons ~ Z^4 (45M!)		

 \vec{B}

 $v \approx c$

Coherent : nuclear keeps intact

Incoherent : nuclear breaks up

- Coherent: average gluon distribution in nucleus.
- Incoherent: sub-nucleon fluctuation.

M. I. Abdulhamid *et al.* (STAR Collaboration) Phys. Rev. C **110**, 014911 – Published 31 July 2024 M. I. Abdulhamid *et al.* (STAR Collaboration) Phys. Rev. Lett. **133**, 052301 – Published 31 July 2024

Advantage of the isobaric $\binom{96}{44}Ru$, $\frac{96}{40}Zr$) collision: smaller collision system.

> Coherent J/ ψ production measurement in UPC isobaric collisions will provide a direct way to study gluon structure dependence of collision system.

Time Projection Chamber

- Tracking reconstruction
- Momentum and energy loss
- Acceptance: $|\eta| < 1.5; \ 0 \le \varphi < 2\pi$

Time Of Flight Detector

- Time of flight
- Particle identification
- Acceptance: $|\eta| < 1$; $0 \le \phi < 2\pi$

Barrel ElectroMagnetic Calorimeter

- e^{\pm} trigger
- Particle identification with deposited energy
- Acceptance: $|\eta| < 1; 0 \le \varphi < 2\pi$

 $\gamma\gamma$: Obtained through the template of the background mass region.

Inco: $\frac{d\sigma}{dp_T} = c_1 * p_T (1 + (\frac{c_2}{n}) |p_T^2|)^{-n}$ Eur. Phys. J. C (2013) 73:2466 DOI 10.1140/epjc/s10052-013-2466-y Coh: Obtained by subtracting the $\gamma\gamma$ and Inco.

ALICE, PLB 798 (2019) 134926 ALICE, EPJC 81 (2021) 712

> obtain the proportion of the J/ ψ cross-section produced by high-momentum photons and low-momentum gluons (or vice versa).

- Nuclei may exchange soft photon(s) caused the nuclear dissociation. It's occurrence probability is related to the distance from the nucleus.
- > Neutron multiplicity(N) can help to describe the impact parameter(b).
- \succ The photon flux is also related to the distance from the nucleus

10²

 $N(k) = \int d^2 N(k, b) P_{0had}(b) P_1(b) P_2(b), P_i(b) \propto 1/b^2$

10³ b (fm)

10

Guzey et al., EPJC 74 (2014) 2942

Measuring the cross-section with different neutron multiplicity(0N0N,0NXN, XNXN) can help to solve this question.

M. I. Abdulhamid *et al.* (STAR Collaboration) Phys. Rev. Lett. **133**, 052301 – Published 31 July 2024

Cross-sections as function as rapidity with
different neutron multiplicity and the ratio
of incoherent compared to coherent in
Au + Au collision was measured to help solve
the "Photon energy ambiguity".

 \blacktriangleright We chose a neutron multiplicity of 15 as the boundary between 0N and XN.

Zengzhi Li @ STAR 区域研讨会

XNXN

> Because of the low statistics, we may just focus on the |y| < 1 in XNXN cross-section.

Method: Monte Carlo

Data-driven

Using the MC (without embedding the daq files) to get the TPC reconstruction Efficiency(left).
 Using the data-driven to extract the BEMC-tracking match efficiency(right).

Summary:

- Raw M_{ee} spectrum, and raw p_T spectrum with different rapidity in the isobar system has been measured, also the distribution with different neutron multiplicity was measured.
- Using the MC to extract the TPC reconstruction efficiency, and the data-driven to extract the BEMC-tracking match efficiency.

Outlook:

- Efficiency.
- ➢ BEMC trigger eff.
- ➢ EID efficiency.
- $\frac{d\sigma}{dy}$ distribution.
 - $\rightarrow \frac{d\sigma}{dy}$ with different neutron multiplicity.

Summary:

- Raw M_{ee} spectrum, and raw p_T spectrum with different rapidity in the isobar system has been measured, also the distribution with different neutron multiplicity was measured.
- Using the MC to extract the TPC reconstruction efficiency, and the data-driven to extract the BEMC-tracking match efficiency.

Outlook:

- Efficiency.
- ➢ BEMC trigger eff.
- EID efficiency.
- $\frac{d\sigma}{dy}$ distribution.
- $\blacktriangleright \frac{d\sigma}{dy}$ with different neutron multiplicity.

Back up

Collision	Year of data taken	Production Tag	Number of Events	Size (GB) of MuDst	Number of MuDst files
zrzr200	2018	<u>P22ia</u>	78285198	22604	8838
ruru200	2018	<u>P22ia</u>	78282272	22604	8837

Event Selection

> |Vz | < 100 cm

Track quality cut

Match BEMC cluster

 \blacktriangleright nHitFit > 15 \succ nHitdedx ≥ 11

 $\geqslant |\eta| < 1$

 \geq 6 BEMC cluster (event activity cut)

> BEMC back to back cluster

Data set:

Run18 RuRu / ZrZr @200GeV

Trigger :

Trigger Requirements:

 $1 \leq TofMult \leq 6$

BEMC back to back

BBC veto

PID cut:

- One pair formed by 2 primary tracks from same vertex
- \blacktriangleright Tracks opening angle at BEMC is $\Delta \phi_{BEMC} > 2.618$ (BEMC back to back cluster)
- $\triangleright \chi^2_{ee} = nSigmae_1^2 + nSigmae_1^2 < 10$
- $\succ \chi^2_{ee} < \chi^2_{\pi\pi}$

UPC Jpsi

Trigger ID:

600701 600711

• *nHitsFit* > 15 **Track quality cut:** • *nHitdEdx* > 11 • $|\eta| < 1$ • Match BEMC Cluster(in BEMC match eff)

$$\varepsilon_{TPC} = \frac{N_{RC} \int |\psi| (nHitsFit>15\&nHitdEdx>11\&|\eta|<1)}{N_{MC} \int |\psi| < 1}$$

Not include the vertex finder efficiency.

Notice:

- ➤ We use the MC (without embedding the daq files) to get the TPC reconstruction Efficiency.
- \succ Consider the vertex finder efficiency with the embedding.

Method: *data – driven*

Dataset:

▶ 10,11,14 AuAu200GeV "UPC_main" :
 2 ≤ tofmult ≤ 6, ZDC E/W N ≥ 1, BBC E/W no signal

no BEMC bias

Selections:

• Common: $nHitFit \ge 15$, $nHitdEdx \ge 11$, $|V_z| < 100cm$. $\chi^2_{ee} = nsigemae_1^2 + nsigemae_2^2 < 10 \&\& \chi^2_{ee} < \chi^2_{\pi\pi}$, $ddtof \ cut: |ddtof| < 0.4ns$, vertex exactly 2 tracks TOF matched.

Raw BEMC match eff:
$$\varepsilon_{BEMC} = \frac{N(TOF + BEMC)}{N(TOF)}$$

- Raw BEMC-Track match efficiency of $p_T > 1$ GeV electron candidates By dataset without BEMC bias.
- Obtain the average efficiency using unequal precision measurements.

