

J/ψ R_{AA} in Au+Au collisions at 14.6, 17.3, 19.6 and 27GeV

Wei Zhang

2024/10/13

Introduction

- Quarkonia suppression was proposed as a sensitive probe to QGP properties
 - Dominantly produced before QGP formation
- ➢ Hot medium effects
 - Dissociation(color screening and dynamic interaction)
 - Regeneration
- Cold nuclear matter effects
 - nPDF
 - Nuclear absorption
- > Other effects
 - Comover interactions
 - Feed-down contribution

Credit: Q. Yang

 $R_{AA} = \frac{\sigma_{\rm inel}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{\rm nn}/dy dp_T}$

3

Introduction

- Quarkonia suppression was proposed as a sensitive probe to QGP properties
 - Dominantly produced before QGP formation
- Hot medium effects
 - Dissociation(color screening and dynamic interaction)
 - Regeneration
- Cold nuclear matter effects
 - nPDF
 - Nuclear absorption
- > Other effects
 - Comover interactions
 - Feed-down contribution

 $R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{nn}/dy dp_T}$

STAR Detector

Time Projection Chamber

- Tracking
- Momentum and energy loss
- Acceptance: $|\eta| < 1.5; \ 0 \le \phi < 2\pi$

- **Time Of Flight Detector**
 - Time of flight
 - Particle identification
 - Acceptance: $|\eta| < 1$; $0 \le \varphi < 2\pi$

Au+Au Collisions at STAR

 \succ BES-I → BES-II

- 10-20 times higher statistics than BES-I
- Enables differential measurements at low collision energies
- \triangleright Collision energy dependence of J/ ψ production
 - Au+Au collisions at $\sqrt{s_{NN}} = 14.6, 17.3, 19.6, 27$ GeV
- Smaller regeneration effect Wei Zhang @STAR区域研讨会

2024/10/13

5

Analysis Procedure

Efficiencies & acceptances

(Data driving, embedding)

Systematic uncertainties (Signal Extraction, eID, etc.)

Electron Identification

- System : Au+Au collisions in RHIC-STAR.
- > Particle and decay channel: $J/\psi \rightarrow e^- + e^+$

Raw J/ ψ Signal

$$R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{pp}/dy dp_T}$$

- The function used to fit UL-Sign (UL) consists of
 - J/ψ template
 - combinatorial background
 - residual background
- Extracted combinatorial background shape from mixed-event UL-Sign.
- Residual background parameterized using a firstorder polynomial.

2024/10/13

Efficiency and Acceptance Corrections

2024/10/13

Efficiency and Acceptance Corrections

STAR

> TOF Matching efficiency has pt $\eta \Phi$ dependence

 $\frac{\text{Electron TOF Matching Efficiency(3D)}}{\text{Pion TOF Matching Efficiency(3D)}} = \frac{\text{Electron TOF matching efficiency (1D)}}{\text{Pion TOF matching efficiency (1D)}}$

Inclusive J/ ψ Invariant Yields

$$R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA} / dy dp_T}{d^2 \sigma_{pp} / dy dp_T}$$

Inclusive J/ ψ invariant yields as a function of p_T at mid-rapidity (|y| < 1) in Au+Au collisions at $\sqrt{s_{NN}} = 14.6, 17.3, 19.6, 27$ GeV.

pp Inelastic Cross Section

p+p Baseline

$$R_{AA} = \frac{\sigma_{\text{inel}}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}/dy dp_T}{d^2 \sigma_{pp}/dy dp_T}$$

For p+p baselines at √s_{NN} = 14.6, 17.3, 19.6, and 27 GeV are extracted from phenomenological interpolations
W. Zha, et al., Phys. Rev. C 93 (2016) 024919.

p+p Baseline

- The p_T dependence of deduced J/ ψ differential cross section at midrapidity in p+p collisions at $\sqrt{s_{NN}} = 14.6$, 19.6, 27 GeV $\sqrt{s_{NN}} = 14.6$ GeV 19.2 %
- The systematic uncertainty arises from fitting world-wide data:

$\sqrt{s_{NN}} = 14.6 \text{ GeV}$	19.2 %
$\sqrt{s_{NN}} = 17.3 \text{ GeV}$	16.7%
$\sqrt{s_{NN}} = 19.6 \text{ GeV}$	11.7 %
$\sqrt{s_{NN}} = 27 \text{ GeV}$	6.1 %

2024/10/13

Wei Zhang @STAR区域研讨会

14

$p_{\rm T}$ Dependence of Inclusive J/ $\psi R_{\rm AA}$

➢ Low p_T suppression, R_{AA} increases with p_T for √s_{NN} = 14.6, 19.6 and 27 GeV
➢ No significance p_T dependence at 200 GeV

Centrality Dependence of Inclusive J/ ψR_{AA}

Hint of decreasing trend as a function of centrality

> R_{AA} shows no significant energy dependence at RHIC for similar <N_{part}>.

Energy Dependence of Inclusive J/ ψR_{AA}

X. Zhao, R. Rapp, Phys. Rev. C 82 (2010) 064905 (private communication). L. Kluberg, Eur. Phys. J. C 43 (2005) 145. NA50 Collaboration, Phys. Lett. B 477 (2000) 28.

- > Data at $\sqrt{s_{NN}} = 14.6$, 19.6 and 27 GeV follow the trend
- No significant energy dependence of J/ψ R_{AA} in central collisions is observed within uncertainties up to 200 GeV
- ➤ The J/ψ suppression in the LHC energy region is weaker
 - Regeneration dominates at LHC energies
- The transport model qualitatively describes the observed energy dependence

ALICE Collaboration, Phys. Lett. B 734 (2014) 314 STAR Collaboration, Phys. Lett. B 771 (2017) 13-20 STAR Collaboration, Phys. Lett. B 797 (2019) 134917 ALICE Collaboration, Nucl. Phys. A 1005 (2021) 121769

2024/10/13

- Significant suppression of charmonium in central heavy-ion collisions at RHIC
- > No significant collision energy dependence of $J/\psi R_{AA}$ at RHIC
- ► Hint of decreasing with centrality and increasing with p_T for J/ ψ R_{AA} at low energies
- ---> Interplay of dissociation, regeneration and cold nuclear matter effects
- ----- Can be used to constrain QGP properties

Thank you

Back up

Embedding ID:20192501

$$\sigma^{\text{embed}} = \sqrt{a^2 P_T^2 + b^2}$$

minimum χ 2 is the best *a* ' value

Systematic Uncertainty

Systematic uncertainty from J/ ψ yield measurements Source:

Track quality cuts

- nHitsFit
- nHitsDedx
- Dca (cm)

Signal extraction

- J/ψ templates
- Fitting range
- Residual background function form
- Combinatorial background function form
- Bin Width

Electron Identification cuts

- $n\sigma_e$ efficiency
- $1/\beta$ efficiency
- TOF Matching efficiency

Analyzed bin	27 GeV	19.6 GeV	14.6 GeV
0-80%	12.4 %	11.2 %	13.2 %
0-20%	13.2 %	12.3 %	13.1 %
20-40%	12.1 %	11.5 %	15.0 %
40-60%	11.5 %	11.6 %	
60-80%	14.4 %	16.1 %	13.5 %
0-1GeV/c	12.8 %	12.5 %	14.6 %
1-2GeV/c	14.4 %	11.6 %	12.7 %
2-4GeV/c	11.6 %	15.0 %	24.1 %

pp Inelastic Cross Section

- The parameters:
 - Glauber model inputs:
 - Collision system: Au+Au
 - Energy: 27 GeV
 - Radius of Au: R = 6.38 fm
 - Skin depth: d = 0.535 fm
 - Sigma(NN) = 33 mb
 - Separation of two nucleons: ds = 0.9 fm

The input sets in Glauber model			
Mode	Au + Au		
Energy	17.3 GeV		
Events	106		
Radius of Au	R = 6.38 fm		
Skin Depth	d = 0.535 fm		
Inelastic NN cross section	$\sigma_{NN} = 31.8 \text{ mb}$		

$\sqrt{S_{NN}}$ (GeV)	$\sigma_{inelastic} \ (mb)$	Error(mb)
200	43.40	0.77
27	32.99	0.16
19.6	32.08	0.14
17.3	31.78	0.13
14.6	31.42	0.13
11.5	30.99	0.12
9.2	30.65	0.13

	The parameters (Glauber model inputs)		
Collision system		Au + Au	
Energy		14.6 GeV	
Radius of Au		R = 6.38 fm	
Skin depth		d = 0.535 fm	
Sigma(NN)		32 mb	