

Onset of Partonic Collectivity in Heavy-Ion Collisions at RHIC

Xing Wu Central China Normal University

Outline

Motivation

- $\succ p_T$ Dependence of v_2
- Energy Dependence of NCQ Scaling
- Summary and Outlook

Motivation – Elliptic Flow

$$rac{dN}{d(\phi-\Psi)}\sim 1+\sum_{n=1}^\infty 2v_n\cos(n(\phi-\Psi))$$

> Elliptic flow: $v_2 = \langle \cos 2(\phi - \Psi) \rangle$

 $\succ v_2$ can reflect the degree of freedom: partonic vs. hadronic

S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).

Motivation – NCQ Scaling at 200 GeV

> Au + Au collisions 200 GeV: partonic collectivity

Xing Wu-STAR区域研讨会, Oct. 10-15

Motivation – NCQ Scaling at 3 GeV

STAR Detector System

- ➢ inner TPC upgrade
 - Improves capability of PID
 - Extends η coverage from 1.0 to 1.5
 - Endcap TOF
 - Extends rapidity coverage
 - Improves precision studies of observables rapidity dependence
 - Event Plane Detector
 - Allows a better event plane resolution

STAR Fixed Target Program

Au+Au (GeV)	3.0	3.2	3.5	3.9	4.5
Baryon chemical potential (~MeV)	750	700	670	635	590
Events analyzed (M)	260	223	107	94	128

Particle Identification

- ➢ Good capability of particle identification (PID) based on TPC and TOF
- Extend the phase space coverage by TOF

Particle Identification

Decayed particles are reconstructed by KF(Kalman Filter) particle package

A. Banerjee, I. Kisel and M. Zyzak, Int. J. Mod. Phys. A 35, 2043003 (2020)

p_T Dependence of v_2 at 3 – 4.5 GeV

 $\succ v_2(p_T)$ changes from negative to positive between 3 GeV and 4.5 GeV: Shadowing effect

> JAM2 mean-filed qualitatively describe the 3.2 GeV data (π^+ , K^+ , K_s^0) while underestimate 4.5 GeV data

NCQ scaling of v_2 at 3 – 4.5 GeV

NCQ scaling completely breaks below 3.2 GeV : Hadronic interactions
NCQ scaling becomes better gradually from 3.2 to 4.5 GeV
Partonic interactions become more important

Xing Wu-STAR区域研讨会, Oct. 10-15

Energy dependence of $\langle v_2 \rangle$

In-plane expansion

- ≻ Negative to positive flow: 3- 4.5 GeV
- NCQ scaled v_2 ratio of p/K^+ close to unity at 3.9 and 4.5 GeV, while deviating largely from 1 at 3.2 GeV.

Summary and Outlook

- > The v_2 of the particles changes from negative to positive around 3.2 GeV. — Shadowing effect diminishes
- > JAM calculations reproduce the p_T dependence of v_2 at 3.2 GeV

→ Hadronic interactions dominant

NCQ scaling breaks totally at 3 and 3.2 GeV, gradually restoring from 3.2 to 4.5 GeV

→ Dominance of partonic interactions at 4.5 GeV

Summary and Outlook

- Higher statistics, better detector performance and more energy points in BES-II
- Explore the QCD phase diagram

Thank you for your attention!

Xing Wu-STAR区域研讨会, Oct. 10-15