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Introduction: Many-body problem

THE CONDENSED MATTER PHYSICS OF QCD

KRISHNA RAJAGOPAL AND FRANK WILCZEK
Center for Theoretical Physics, Massachusetts Institute of Technology
Cambridge, MA USA 02139

Important progress in understanding the behavior of hadronic matter at high den-
sity has been achieved recently, by adapting the techniques of condensed matter
theory. At asymptotic densities, the combination of asymptotic freedom and BCS
theory make a rigorous analysis possible. New phases of matter with remarkable
properties are predicted. They provide a theoretical laboratory within which chiral
symmetry breaking and confinement can be studied at weak coupling. They may
also play a role in the description of neutron star interiors. We discuss the phase
diagram of QCD as a function of temperature and density, and close with a look
at possible astrophysical signatures.
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INSIDE A NEUTRON STAR

A NASA mission will use X-ray spectroscopy to gather clues about the
interior of neutron stars — the Universe’s densest forms of matter.

Outer crust
Atomic nuclei, free electrons

Inner crust
Heavier atomic nuclei, free
neutrons and electrons

Outer core

Quantum liquid where
neutrons, protons and
electrons exist in a soup

Inner core

Unknown ultra-dense
matter. Neutrons and
protons may remain as
particles, break down into’
their constituent quarks,

or even become ‘hyperons’.

Atmosphere
Hydrogen, helium, carbon  /

Beam of X-rays coming from the
neutron star’'s poles, which sweeps
around as the star rotates.
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“More Is Different”
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“More Is Different” From What?
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Introduction: Few-body problem

Hly,) =E,|y,)

H = Hkinetic + HCoulomb
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Introduction: Few-body problem
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T H = HO + VCoulomb
—p*/(8m>c?)
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—p*/(8m’c?)

‘l'HSO + HDarwin i
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Introduction: Few-body problem
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H = Hkinetic + HCoulomb +H spin—orbit + Hrelativistic + HQED
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Introduction: Nonperturbative QCD Framework

X3 V3 , X3 Y3
P —>—m12

Xz —=— G — V2 - X2 —4—  f------m-- Y2

Xq Vi X1 Vi1

GO (21,20, 23,91,v2,y3) = (Qa(z1)a(z2)a(23)a(y1)a(y2)a(y3)|Q)
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Introduction: Nonperturbative QCD Framework

Classical Mechanics

Quantum Field Theory

) Degrees of freedom

Generalized coord.

/
\

Fields on spacetime

Principle of Stationary Action

~
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Equations of Motion (EoM)

\/

Euler-Lagrange Equation
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Introduction: Nonperturbative QCD Framework

Ve R R N\
A D D J
P " . >
> > » § > P >
) ] < < = < <
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Introduction: Nonperturbative QCD Framework

iﬁéék?
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H = Hkinetic + HCoulomb +H spin—orbit + Hrelativistic + HQED
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Introduction: Nonperturbative QCD Framework
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H = Hkinetic + HCoulomb +H spin—orbit + Hrelativistic + HQED

Ground states
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Excited states

Kernel
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Basics
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Basics: Quarks are dispersive quasi-particles

1 _ Z()
iy - pA(p?) + B(p*) iy p+ M(p?)

S(p) =

Chang, Yang, et. al., PRD 104, 094509 (2021)
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Basics: Quarks are dispersive quasi-particles

S() 1 Z(p?)
p) = - = -
iv-pA(p?) + B(p?) iy -p+ M(p?)
Chang, Yang, et. al., PRD 104, 094509 (2021)
0.5k . ' ' ' ' 1. The quark's effective mass runs with
NN its momentum.
= 0.1} NN~ — . N
& A 2 i 2. The most constituent mass of a light
= \ * . ] quark comes from a cloud of gluons.
= o 57.8 MeV *
0.01k * 385Mev N
[+ 193 ';"Ae:’/ . ] 3. The mass has a fast transition
. .24 .e | | | — between non-pert. and pert. at about
0 1 P 3 4 5 1GeV.
k [GeV]
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Basics: Quarks are dispersive quasi-particles

S(p) - : )
iv-pA(p?) + B(p?) iy -p+ M(p?)
Chang, Yang, et. al., PRD 104, 094509 (2021)
0.5k . ' ' ' ' 1. The quark's effective mass runs with
NN its momentum.
= 0.1} NN~ — . N
& [ A 2 i 2. The most constituent mass of a light
= \ * . ] quark comes from a cloud of gluons.
= o 57.8 MeV *
0.01k * 385Mev .
[+ 193 ';"Ae:’/ . ] 3. The mass has a fast transition
. .24 .e | | | — between non-pert. and pert. at about
0 1 P 3 4 5 1GeV.
k [GeV]

Vacuum — invisible highly dispersive medium
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Basics: Gluons are massive quasi-particles

G|u0n gap equation: Aguilar, Binosi, Papavassiliou and Rodriguez-Quintero

Lattice QCD simulations:

—

D(q) [GeV)
CSC=NNWhAruUuAAQ00OCO

LA L DRI DRI LA L LA LN LN LR BN LR

Oliveira et. al., J.Phys. G38, 045003 (2011)

| ALY ALY WAL LALU LA LU LU L
PP PP T YY) Y)Y Y Py e
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(a) o ]
e 1F s
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Basics: Gluons are massive quasi-particles

G|u0n gap equation: Aguilar, Binosi, Papavassiliou and Rodriguez-Quintero

» The interaction can be decomposed:
gluon running mass + effective running

coupling
) ) kﬂky
g°D, (k) =Gk 6,, — 2
Lattice QCD simulations:
l:“" TrTT T TrTrT TrorrT TrrrT Trorr TrorT TrorT TrrT 4ﬂa k2
T T T T T T T T T f(kz) ~ RL( )
k? + mg%(kz)

Oliveira et. al., J.Phys. G38, 045003 (2011)

| FPTTY PPN FOPTY YN YN Y e e e

| ALY ALY WAL LALU LA LU LU L

D(q) [GeV)
CSC=NNWhAruUuAAQ00OCO

TITT
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o o5 1 15 2 25 3 35 4 45 5 e In QCD: Gluons are cannibals — a particle
2-5_1 L] L L T L I LI B I ) LI I I LI LI I I LN B - .
ki R species whose members become massive by
A 155_ E eating each other — quasi-particles!
x f ]
o 1 .
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Basics: Gluons are massive quasi-particles

Gluon mass fu nction: Oliveira et. al., J.Phys. G38, 045003 (2011)

LI L L B B LI N L B L LI L L B L LR | LB L

=
U AL UL WAL LR

IYYTRTE| ATITETET) [YATETTTT) FEYRTOITY) FYETTITOTa oo
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W

Ru nn i ng Ccou pl i ng . Deur, Brodsky, Roberts, PPNP, 104081 (2024)

agl/n CERN COMPASS
(xgl/n DESY HERMES

ocgl/n SLAC E142/E143
(xgl/n SLAC E154/E155

(xgl/n CERN SMC

@y /T OPAL

cOxx%ol> N

04 Bjorken sum rule
------- GDH limit

- O a,/nHall A/CLAS (2004)
- a,,/m CLAS EG1b (2008)

02~ O ay/mJLab RSS (2008)

- ¥ a,/n CLAS EGldves (2014)

- ® o, /n CLAS EG4 (2022)

- % a,/nHall A/EG4 (2022)
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See, e.g., PRC 84, 042202(R) (2011)
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Basics: Gluons are massive quasi-particles

Gluon mass fu nction: Oliveira et. al., J.Phys. G38, 045003 (2011)
1. The dressed gluon can be well

05;1 LI L TT T T LI N L B L LI L L B L LR | 'T'Ir‘ré parameterized byamassscale
Zoz2 E 2,1.2 g
S ] m;(k%) = ————
’().I; = g( ) Mg2+k2
00:. “():"" . I“ ”LS“ HZ“ “2.5” I3 35 4 41.5 5
q [GeV]
M, ~ 700 MeV
Ru nn i ng cou pl i ng: Deur, Brodsky, Roberts, PPNP, 104081 (2024)
£
o | agl/n CERN COMPASS
= A (xgl/n DESY HERMES
S O ay,/n SLAC E142/E143 . . .
% any/n SLAC EIS4/E1SS 2. The effective running coupling
. * / H : HI
. O o CERN SMC saturates in the infrared limit.
¢ gy /™ OPAL

 converge to: a0) ~ =

04 Bjorken sum rule
------- GDH limit

e transition at: QO ~ 1 GeV

O «,/n Hall A/CLAS (2004)
- A o, /m CLAS EG1b (2008)
021 O ay/nJLabRSS (2008)
- ¥ a,/n CLAS EGldves (2014)
® o, /mCLAS EG4 (2022)
* o,/ Hall A/EG4 (2022)
0 R A See, e.g., PRC 84, 042202(R) (2011)
10 1
Q (GeV)
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Basics: Vertex has DCSB-rendered appearance

Quark-gluon vertex: + 4 + . - ?
(]

See, e.g., PLB722, 384 (2013)
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Basics: Vertex has DCSB-rendered appearance

Quark-gluon vertex: 4 4 + . - ?
(]

point charge — >

distributed charges

See, e.g., PLB722, 384 (2013)
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Basics: Vertex has DCSB-rendered appearance

point charge — >

4 The Dirac and Pauli terms: for an on-shell fermion, the vertex can be decomposed by two

form factors: i0,,

TH(P', P) = y"F(Q%) + M Q' Fy(0?) 12 terms
f

4 The form factors express (color-)charge and (color-)magnetization densities. And the so-
called anomalous moment is proportional to the Pauli term.

See, e.g., PLB722, 384 (2013)
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Basics: Vertex has DCSB-rendered appearance

T ‘ Equation of Motion (DSEs) TR R R Ty

Vi

1

iy - pA(p?) + B(p?)

yHe, + 10, QA + etc. ~ %

i .................................... ‘ Ward identities (Symmetries) ‘
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See, e.g., PLB722, 384 (2013)
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Basics: Vertex has DCSB-rendered appearance

iy Equation of Motion (DSEs) TR R R Ty
S 1 //‘2 : QUA F’u
=~ Y + 1o + etc. ~
iy - pA(p?) + B(p?) A Sl
’
* .................................... Ward identities (Symmetries)

1. There is a dynamic chiral symmetry breaking (DCSB) feedback. DCSB is closely
related to the Pauli term:

See, e.g., PLB722, 384 (2013)
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Basics: Vertex has DCSB-rendered appearance

iy Equation of Motion (DSEs) TR R R Ty
S 1 //‘2 : QUA F’u
=~ Y + 1o + etc. ~
iy - pA(p?) + B(p?) A Sl
’
* .................................... Ward identities (Symmetries)

1. There is a dynamic chiral symmetry breaking (DCSB) feedback. DCSB is closely
related to the Pauli term:

2. The appearance of the vertex is dramatically modified by the dynamics. The vertex
can be phenomenologically expressed as:

See, e.g., PLB722, 384 (2013)
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Basics: Kernel has the Dirac and Pauli terms

AL X

0000000000
0000000000
+
I
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Basics: Kernel has the Dirac and Pauli terms

AL X

4+ The discrete and continuous symmetries strongly constrain the kernel:

0000000000
0000000000
+
I

Poincaré symmetry Gauge symmetry

C-, P-, T-symmetry Chiral symmetry
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Basics: Kernel has the Dirac and Pauli terms

AL X

4+ The discrete and continuous symmetries strongly constrain the kernel:

0000000000
0000000000
+
I

Poincaré symmetry Gauge symmetry

C-, P-, T-symmetry Chiral symmetry

1. Bound state of quark and anti-quark,
e.g., pion but abnormally light:

M, < M, + Mgz

2. Goldstone's theorem: If a generic
continuous symmetry is spontaneously
broken, then new massless scalar
particles appear in the spectrum of
possible excitations.
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Basics: Kernel has the Dirac and Pauli terms

4 Proper decomposition: 4+ Deformed WTIs:

_ _ _ _ Sp(ky) = / (KB 182 )K%) - KR los@KR + KD los(@ K }
K(2)2|:K(+)®K( )]+|:K( )®K(+)i|+|:K( )®+K( )] o 4

Lfim T T o KO . KD N KD 0= [ (i lonta ity K lontan k) + K95, 15 )
+[ L1 ®+KR1}+[KL2 ®-— RZ}"_[ L2’ ®- RQ} a

Ea(ks) — Xa(k-)]
with 75K(i)75 = :I:K(i)7 R4 = %(® + 75 ® 5) —p(k_)

[ AR ok + KD lon(a I + K7 821K )
q

[ {KDBEIKE + KDlona KD + K on(a)K D}
Jdgq

discrete continuous

See, e.g., CPL 38 (2021) 7, 071201

Si-xue Qin: 2024-10-14 @ STARKIFFHTR, Bk 14 /22



)% G & %

CHONGQING UNIVERSITY

Basics: Kernel has the Dirac and Pauli terms

4 Proper decomposition: 4+ Deformed WTIs:

K® = [k o kK| + [kl @ K| + [K) @4 K| Sa(ke) = [ {KE02 G KD sl + KD s G}
- LOo RO L0 RO L1 R1
_ () (=) (=) (+) (+) (+)
+ [K(_,_) ®4 K(.,.)} n [K(_) ® K(_)} n [K(+) ® KH—)} 0—/dq {KLO lon(a-)KRy — Kio'los(a+)|Kry + Kpy [AfA]Km }
L1 R1 L2 - R2 L2 - R2
Ea(ks) — Xa(k-)]

with 75K(i)75 = :I:K(i)7 R4 = %(® + 75 ® 5) —p(k_)

[ AR ok + KD lon(a I + K7 821K )
q

[ {KR08 I + KD a1 + KD oK )
Jdgq

discrete continuous

1. A realistic kernel must involves the Dirac and Pauli structures:

}//,[ 7//,1 6[

G G, Gy Kogeeeeeees » multigluon-exchange

16 Oy Oy

See, e.g., CPL 38 (2021) 7, 071201
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Basics: Kernel has the Dirac and Pauli terms

4 Proper decomposition: 4+ Deformed WTIs:

K® = [k o kK| + [kl @ K| + [K) @4 K| Sa(ke) = [ {KE02 G KD sl + KD s G}
- LOo RO L0 RO L1 R1
_ () (=) (=) (+) (+) (+)
+ [K(_,_) ®4 K(.,.)} n [K(_) ® K(_)} n [K(+) ® KH—)} 0—/dq {KLO lon(a-)KRy — Kio'los(a+)|Kry + Kpy [AfA]Km }
L1 R1 L2 - R2 L2 - R2
Ea(ks) — Xa(k-)]

with 75K(i)75 = :I:K(i)7 R4 = %(® + 75 ® 5) —p(k_)

[ AR ok + KD lon(a I + K7 821K )
q

[ {KR08 I + KD a1 + KD oK )
Jdgq

discrete continuous

1. A realistic kernel must involves the Dirac and Pauli structures:

}//,[ 7//,1 6[

G G, Gy Kogeeeeeees » multigluon-exchange

16 Oy Oy

2. G2 and Gs are proportional to the Pauli term in the vertex, and thus to DCSB:

Gz, G3 ~ DCSB

See, e.g., CPL 38 (2021) 7, 071201
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Ground states
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Ground states: Light & Strange flavor spectra

20T 1 T T 1 T

b || |, =

Mass [GeV]
o
|
|

-' Heré
— PDG
- : e |QCD
| o= : :

m K pKNAZJZZASTS

Q

The interaction strength and current quark masses are fixed by
properties of pseudo-scalar mesons, €.g., pion, kaon, and etc.

See, e.g., Few-Body Syst 60, 26 (2019)
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Ground states: Light & Strange flavor spectra

2.0 ) T I
T
15F A B
Q i :
S -
2 [
0'5__ * -:Her:e 7
. — PDG
-..... : : : : : e |IQCD
ol A B R L
m K p K NAZ=ZAZE= QO

The interaction strength and current quark masses are fixed by
properties of pseudo-scalar mesons, e.g., pion, kaon, and etc.

See, e.g., Few-Body Syst 60, 26 (2019)
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Ground states: Charm & Bottom flavor spectra @)1 A4 £
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Ground states: Charm & Bottom flavor spectra
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4 The mean-absolute-relative-difference
between the calculated values for the
ground-states and the known empirical
masses is about 5%.

4+ The ground spectra is NOT sensitive to
the structures beyond the leading terms
in the vertex and the kernel.

See, e.g., Few-Body Syst 60, 26 (2019)
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Excited states
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Excited states: Multiple partial waves
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See, e.g., PRD 97, 114017 (2018)
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Excited states: Multiple partial waves
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Excited states: Spin-orbit interaction
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See, e.g., CPL 38, 071201 (2021) & EPJA 59, 39 (2023)
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Excited states: Spin-orbit interaction
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4+ With increasing the AM strength, the a1—p
mass-splitting rises very rapidly. From a
quark model perspective, the DCSB-
enhanced kernel increases spin-orbit
repulsion.

See, e.g., CPL 38, 071201 (2021) & EPJA 59, 39 (2023)
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4+ With increasing the AM strength, the a1—p
mass-splitting rises very rapidly. From a
quark model perspective, the DCSB-
enhanced kernel increases spin-orbit
repulsion.

4+ The magnitude and ordering of all
excitation states can be fixed with the
DCSB-enhanced kernel.

See, e.g., CPL 38, 071201 (2021) & EPJA 59, 39 (2023)
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Excited states: DCSB-rendered spectra
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Excited states: DCSB-rendered spectra
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Excited states: DCSB-rendered spectra
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4 The magnitude and ordering of radial or
angular excitation states are WRONG in
the approximation lacking of DCSB effect.

4+ The DCSB-enhanced kernel boost up 1st
excitation nucleon, and can potentially fix
the full spectra.

In progress
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Summary

4+ The framework of few-body bound-state equations, which describes hadrons in continuum
QCD, and its basics (e.g., quark, gluon, vertex, kernel) are introduced.

4+ Baryon properties are studied: a) ground states — full mass spectrum of J=0, 1/2, 1, 3/2;
b) excited states — partial waves, spin-orbit interaction, DCSB-rendered spectra.
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Summary
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QCD, and its basics (e.g., quark, gluon, vertex, kernel) are introduced.

4+ Baryon properties are studied: a) ground states — full mass spectrum of J=0, 1/2, 1, 3/2;
b) excited states — partial waves, spin-orbit interaction, DCSB-rendered spectra.

Outlook

# Use the three-body Faddeev equation to a wider range of applications in baryon problems
of QCD: transition form factors, parton distribution functions, and etc.

& Hopefully, iterating with future high precision experiments on light and heavy hadrons,
from spectroscopy to structures, we may provide a faithful path to understand QCD.
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