

Impact of vector meson spin on the search for the chiral magnetic effect in heavy-ion collisions

Diyu Shen

Fudan University

STAR regional conference, Chongqing, Oct. 10-15, 2024

Zhiyi Wang, Jinhui Chen, Diyu Shen, Aihong Tang, Gang Wang, arXiv:2409.04675 (2024) Diyu Shen, Jinhui Chen, Aihong Tang and Gang Wang, Phys. Lett. B 839 (2023) 137777

Introduction of chiral magnetic effect

Chirality imbalance $+$ Magnetic field $=$ Electrical current

- Local CP violation in QCD results in chirality imbalance in quark gluon plasma.
- With spin being polarized by external magnetic field, quarks with opposite charge move in opposite direction.
- Charge separation along the magnetic field.

D.E. Kharzeev, J. Liao, Nat. Rev. Phys. 3 (2021) 55–63

How to measure the CME?

$$
f(\Delta \phi^+) = 2a_1^+ \sin(\Delta \phi^+) + \sum 2v_n \cos(n\Delta \phi^+)
$$

- Charge separation is averaged out over many collisions.
- Multi-particle correlations measure fluctuations.

$$
\gamma_{112} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle = v_1^{\alpha} v_1^{\beta} - a_1^{\alpha} a_1^{\beta}
$$

$$
\gamma_{112}^{OS} = a_1^2
$$

 $\gamma_{112}^{SS} = -a_1^2$ 1 S.A. Voloshin, PRC, 70 057901 (2004)

STAR, Phys. Rev. C, 88 064911

The CME measurements

(2022) ALICE, arXiv:2210.15383 (2022) STAR, PRC 105, 014901

(2009) STAR, PRL 103 251601

30

ne charge, AuA opp charge, AuAu e charge, CuCu

% Most Central

(2023) STAR, PLB 839 137779

 $\frac{1}{2}$ STAR Au+Au $\sqrt{s_{_{\rm NN}}}$ = 200 GeV

 $-20 - 50%$ $-50-80%$

(2018) ALICE, PLB 777 151

(2013) STAR, PRC 88, 064911

• The CME observable $\Delta\gamma_{112}$ was proposed.

S.A. Voloshin, PRC, 70 057901 (2004)

- Non-zero $\Delta\gamma_{112}$ in A+A collisions has been observed by STAR and ALICE.
- Non-zero $\Delta\gamma_{112}$ in p+A collisions has been observed by CMS.
- Painful fighting with CME backgrounds.
- Background control.
- New observables. $\mathbf O$

The global spin alignment of vector mesons

Z.T. Liang et al., Physics Letters B 629 (2005) 20–26

$$
\frac{d^2N}{d\cos\theta * d\beta} = \frac{3}{8\pi} [(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta *\n- \sqrt{2} (\text{Re}\rho_{10} - \text{Re}\rho_{0-1})\sin(2\theta^*)\cos\beta\n+ \sqrt{2} (\text{Im}\rho_{10} - \text{Im}\rho_{0-1})\sin(2\theta^*)\sin\beta\n- 2\text{Re}\rho_{1-1}\sin^2\theta * \cos(2\beta)\n+ 2\text{Im}\rho_{1-1}\sin^2\theta * \sin(2\beta)]
$$

$$
\rho^V = \begin{pmatrix} \rho_{11} & \rho_{10} & \rho_{1-1} \\ \rho_{01} & \rho_{00} & \rho_{0-1} \\ \rho_{-11} & \rho_{-10} & \rho_{-1-1} \end{pmatrix}
$$

- Spin state along orbit angular momentum, characterized by spin density matrix.
- Distribution of decay products depend on vector meson spin, in the transverse plane:

$$
\frac{dN}{d\phi^*} = \frac{1}{2\pi} \Big[1 - \frac{1}{2} (3\rho_{00} - 1) \cos 2\phi^* + \sqrt{2} \text{Im}(\rho_{10} - \rho_{0-1}) \sin 2\phi^* + \text{Re}\,\rho_{1-1} \cos 2\phi^* \Big]
$$

Zhiyi Wang et al., arXiv:2409.04675 (2024)

The global spin alignment measurements

• Spin alignment of vector mesons along direction perpendicular to reaction plane has been observed in experiment.

The off-diagonal terms

OPAL Collab., Phys. Lett. B 412 (1997) 210–224.

 Z^0 decayed K^{*0}

- Spin coherence gives finite Re ρ_{1-1} .
- Experimental measurements (quark matter 2025)?

Vector meson spin to the Δ*γ* **observable**

 $\gamma_{112} = \langle \cos(\phi_\alpha + \phi_\beta - 2\Psi_{RP}) \rangle$

$$
\gamma_{112}^{OS} = \left\langle \cos(\phi_+ + \phi_- - 2\Psi_{RP}) \right\rangle
$$

= $\left\langle \cos \Delta \phi_+ \right\rangle \left\langle \cos \Delta \phi_- \right\rangle + \frac{N_\rho}{N_+ N_-} \text{Cov}(\cos \Delta \phi_+, \cos \Delta \phi_-) - \left\langle \sin \Delta \phi_+ \right\rangle \left\langle \sin \Delta \phi_- \right\rangle - \frac{N_\rho}{N_+ N_-} \text{Cov}(\sin \Delta \phi_+, \sin \Delta \phi_-) \right\}$

 $\langle ab \rangle = \langle a \rangle \langle b \rangle + \text{Cov}(a, b)$

In ρ rest frame, the ϕ^* distribution of daughters is given by e.g $\rho \to \pi^+\pi^-$, the decay products are correlated due to momentum conservation.

$$
\frac{dN}{d\phi^*} = \frac{1}{2\pi} \Big[1 - \frac{1}{2} (3\rho_{00} - 1) \cos 2\phi^* + \sqrt{2} \text{Im}(\rho_{10} - \rho_{0-1}) \sin 2\phi^* + \text{Re}\,\rho_{1-1} \cos 2\phi^* \Big]
$$

The covariance between decay products is given by

$$
\text{Cov}(\cos \phi_+^*, \cos \phi_-^*) = -\left\langle \cos^2 \phi_+^* \right\rangle + \left\langle \cos \phi_+^* \right\rangle^2 = -\frac{1}{2} + \frac{1}{8}(3\rho_{00} - 1) - \frac{\text{Re}\rho_{1-1}}{4},
$$

\n
$$
\text{Cov}(\sin \phi_+^*, \sin \phi_-^*) = -\left\langle \sin^2 \phi_+^* \right\rangle + \left\langle \sin \phi_+^* \right\rangle^2 = -\frac{1}{2} - \frac{1}{8}(3\rho_{00} - 1) + \frac{\text{Re}\rho_{1-1}}{4}.
$$

Global spin alignment to the Δ*γ* **observable**

Therefore,
$$
\Delta \gamma^* = \gamma^{*OS} - \gamma^{*SS} = \frac{N_\rho}{N_+ N_-} \left[\frac{3}{4} (\rho_{00} - \frac{1}{3}) - \frac{1}{2} \text{Re} \rho_{1-1} \right]
$$

The $\Delta\gamma$ is proportional to $(\rho_{00}-\frac{1}{3})-\frac{2}{3}$ Re ρ_{1-1} in decay rest frame. 3 $) - \frac{2}{3}$ 3 $\text{Re}\rho_{1-1}$

In lab frame, the Lorentz boost depends on the momentum of *ρ*,

$$
Boost factor in plane
$$

\nCov(cos φ₊, cos φ_−) = f_cCov(cos φ^{*}₊, cos φ^{*}_−) = f_c $\left[-\frac{1}{2} + \frac{1}{8}(3ρ_{00} - 1) - \frac{Reρ_{1-1}}{4} \right]$
\nCov(sin φ₊, sin φ_−) = f_sCov(sin φ^{*}₊, sin φ^{*}_−) = f_s $\left[-\frac{1}{2} - \frac{1}{8}(3ρ_{00} - 1) + \frac{Reρ_{1-1}}{4} \right]$
\nf_c = f₀ + $\sum a_n (v_2^ρ)^n$
\nSoost factor out of plane
\n
$$
f_s = f_0 + \sum b_n (v_2^ρ)^n
$$
\n
$$
\Deltaγ_{112} = \frac{N_ρ}{N_+ N_-} \left[(f_c + f_s) [(\frac{3}{8}(\rho_{00} - 1) - \frac{1}{4}Reρ_{1-1}] - \frac{1}{2}(f_c - f_s) \right] \sim \text{spin} + v_2^ρ
$$

Model simulations

Setups of toy model

• Spectrum of primordial pion

$$
\frac{dN_{\pi^\pm}}{dm_T^2} \propto \frac{1}{e^{m_T/T_{\rm BE}}-1},
$$

• Spectrum of *ρ*

$$
\frac{dN_{\rho}}{dm_T^2} \propto \frac{e^{-(m_T - m_{\rho})/T}}{T(m_{\rho} + T)},
$$

- 195 pairs of $\pi^+\pi^-$ with 33 from ρ decays
- v_2 and v_3 of primordial pions are set to zero.
- **•** Spin alignment effect is introduced by sampling decay products according to

$$
\frac{dN}{d\cos\theta^*} = \frac{3}{4} \left[(1 - \rho_{00}) + (3\rho_{00} - 1) \cos^2\theta^* \right]
$$

A. H. Tang, Chin. Phys. C 44 054101 S. Lan, et al. Phys. Lett. B 780 319 D. Shen, et al. Chin. Phys. C 45 054002

Setups of AMPT

- String melting version
- AuAu 200 GeV with impact parameter $b \sim 8$ fm
- **•** Spin alignment effect is introduced by sampling decay products according to

$$
\frac{d^2N}{d\cos\theta * d\beta} = \frac{3}{8\pi} [(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta * -\sqrt{2}(\text{Re}\rho_{10} - \text{Re}\rho_{0-1})\sin(2\theta^*)\cos\beta +\sqrt{2}(\text{Im}\rho_{10} - \text{Im}\rho_{0-1})\sin(2\theta^*)\sin\beta -2\text{Re}\rho_{1-1}\sin^2\theta * \cos(2\beta) +2\text{Im}\rho_{1-1}\sin^2\theta * \sin(2\beta)]
$$

Global spin alignment to the Δ*γ* **observable**

D. Shen et al., Phys. Lett. B 839 (2023) 137777 Z. Wang et al, arXiv:2409.04675 (2024)

• A linear dependence of $\Delta \gamma$ as a function of ρ_{00} and $\text{Re}\rho_{1-1}$ has been observed, slope and intercept depend on spectra and flow of *ρ* mesons.

N. Magdy, Phys. Rev. C 97 (2018) 061901

$$
R_{\Psi_2}(\Delta S) \equiv \frac{N(\Delta S_{\text{real}})}{N(\Delta S_{\text{shuffled}})} / \frac{N(\Delta S_{\text{real}}^{\perp})}{N(\Delta S_{\text{shuffled}}^{\perp})},
$$

$$
\Delta S = \langle \sin \Delta \phi_+ \rangle - \langle \sin \Delta \phi_- \rangle,
$$

$$
\Delta S^{\perp} = \langle \cos \Delta \phi_+ \rangle - \langle \cos \Delta \phi_- \rangle,
$$

N. Magdy, Phys. Rev. C 97 (2018) 061901

Definition:

$$
R_{\Psi_2}(\Delta S) \equiv \frac{N(\Delta S_{\text{real}})}{N(\Delta S_{\text{shuffled}})} / \frac{N(\Delta S_{\text{real}}^{\perp})}{N(\Delta S_{\text{shuffled}}^{\perp})},
$$

$$
\Delta S = \langle \sin \Delta \phi_+ \rangle - \langle \sin \Delta \phi_- \rangle,
$$

$$
\Delta S^{\perp} = \langle \cos \Delta \phi_+ \rangle - \langle \cos \Delta \phi_- \rangle,
$$

$$
\frac{S_{\text{concavity}}}{\sigma_R^2} = \frac{1}{\sigma^2 (\Delta S_{\text{real}})} - \frac{1}{\sigma^2 (\Delta S_{\text{shuffled}})} - \frac{1}{\sigma^2 (\Delta S_{\text{real}}^{\perp})}
$$
\n
$$
+ \frac{1}{\sigma^2 (\Delta S_{\text{shuffled}}^{\perp})}.
$$
\n
$$
\sigma^2 (\Delta S_{\text{real}}) = f_0 \left[\sigma_s^2 - \frac{2N_\rho}{N_+ N_-} \right]
$$
\n
$$
\sigma^2 (\Delta S_{\text{real}}^{\perp}) = f_0 \left[\sigma_c^2 - \frac{2N_\rho}{N_+ N_-} \right]
$$
\n
$$
\sigma^2 (\Delta S_{\text{real}}^{\perp}) = f_0 \sigma_c^2,
$$
\n
$$
\sigma^2 (\Delta S_{\text{shuffled}}^{\perp}) = f_0 \sigma_c^2,
$$

 $S_{\text{concavity}} = \text{Sign}\left[\text{Re }\rho_{1-1} - \frac{3}{2}(\rho_{00} - \frac{1}{3})\right]$

Constructing direct subtraction:

$$
\Delta \sigma_R^2 = \sigma^2 (\Delta S_{\text{real}}) - \sigma^2 (\Delta S_{\text{shuffled}})\\ -\sigma^2 (\Delta S_{\text{real}}^\perp) + \sigma^2 (\Delta S_{\text{shuffled}}^\perp)
$$

$$
\Delta \sigma_R^2 = f_0 \frac{N_\rho}{N_+ N_-} \left[\frac{3}{2} (\rho_{00} - \frac{1}{3}) - \text{Re}\, \rho_{1-1} \right]
$$

$$
\Delta \sigma_R^2 = 2\Delta \gamma
$$

- $R_{\Psi_2}(\Delta S)$ could be concave and convex depending on ρ_{00} and $\text{Re}\rho_{1-1}.$
- $\Delta \sigma_R^2$ is sensitive to ρ_{00} and $\mathrm{Re} \rho_{1-1}$.

Simulations in AMPT model are consistent with toy model qualitatively.

Global spin alignment to the signed balance function

Signed balance function A. H. Tang, Chin. Phys. C 44 054101

$$
\Delta B_y \equiv \left[\frac{N_{y(+-)} - N_{y(++)}}{N_+} - \frac{N_{y(-+)} - N_{y(--)}}{N_-} \right]
$$

$$
- \left[\frac{N_{y(-+)} - N_{y(++)}}{N_+} - \frac{N_{y(+-)} - N_{y(--)}}{N_-} \right]
$$

$$
= \frac{N_+ + N_-}{N_+ N_-} [N_{y(+-)} - N_{y(-+)}],
$$

$$
r \equiv \sigma(\Delta B_y)/\sigma(\Delta B_x).
$$

Assuming all particles have same pT, we will have

(a) (b)
$$
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$

\n(b) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\n(c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\n(d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\n(e) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\n(f) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\n(g) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\n(g) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\n(g) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\n(h) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\n(i) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(j) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(k) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(l) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(m) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(m) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(m) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(n) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(o) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(p) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(p) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(p) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(p) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
\n(p) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix$

$$
\sigma^2(\Delta B_y) \approx \frac{64M^2}{\pi^4} \left(\frac{4}{9M} + 1 + \frac{4}{3}v_2\right) \sigma^2(\Delta S_{\text{real}}),
$$

$$
\sigma^2(\Delta B_x) \approx \frac{64M^2}{\pi^4} \left(\frac{4}{9M} + 1 - \frac{4}{3}v_2\right) \sigma^2(\Delta S_{\text{real}}^\perp).
$$

$$
\Delta \sigma^2(\Delta B) = \sigma^2(\Delta B_y) - \sigma^2(\Delta B_y) \sim c_1 + c_2 \left[\frac{3}{2}(\rho_{00} - \frac{1}{3}) - \text{Re}\,\rho_{1-1}\right]
$$

Z. Wang et al, arXiv:2409.04675 (2024)

Global spin alignment to the signed balance function

$$
c_1 + c_2 \left[\frac{3}{2} (\rho_{00} - \frac{1}{3}) - \text{Re}\,\rho_{1-1} \right]
$$

Signed balance function is also sensitive to ρ_{00} , the $\Delta\sigma^2(\Delta B)\,$ is also a linear function.

The global spin alignment from CME

- The CME needs quark to be polarized by magnetic filed, the quark polarization means spin alignment of vector mesons.
- A fraction of ρ meson is from $\pi\pi$ regeneration, the CME will make the distribution of relative angular momentum of the $\pi\pi$ pair to be anisotropic. Due to the angular momentum conservation, the regenerated ρ has anisotropic spin distribution.

The global spin alignment from CME

Z.T. Liang and X.N. Wang, Phys. Lett. B Yi-Liang Yin et al., Phys. Rev. C 110 024905 (2024)

Influence of spin alignment on v2 **Influence** v2 on spin alignment

- The $\Delta\gamma_{112}$, $R_{\Psi_2}(\Delta S)$ and signed balance function $r_{\rm lab}$ are both influenced by the spin effect of vector mesons.
- \bullet It can be a dilution effect to the CME observables, depending on the $\rho_{00} \dfrac{1}{3}$ and Reρ_{1-1} . 3
- Motivating us to measure the $\mathsf{Re} \rho_{1-1}$ in experiment (hopefully to be shown at QM 2025).

Future work:

Influence on the CME background control methods in experiment (spectator plane/ participant plane, event shape engineering)?