

Outline

- I. Nuclear structure in different time scale
- II. Nuclear structure in heavy ²³⁸U and intermediate ⁹⁶Ru and ⁹⁶Zr
- III. Nuclear structure in light ¹⁶O nucleus
- IV. Conclusions and outlooks

I will only more focus on the current STAR data, I am sorry if I didn't include other interesting data and model studies.

I. Nuclear structure in different time scales

The power of imaging

First-ever image of a black hole

MRI CT image

Image of electrons at attosecond

Astronomical scale

microscopic scale

Imaging: one of the scientific methods to understand nature!

Collective structure of atomic nuclei

- Emergent phenomena of the many-body quantum system
 - Quadrupole/octupole/hexadecapole deformations
 - Clustering, halo, skin, bubble...
 - Non-monotonic evolution with N and Z

M. Centelles et al., PRL102, 122502(2009)

Low-energy spectroscopy vs high-energy snapshot method

Intrinsic frame shape not directly visible in lab frame

-- Mainly inferred from non-invasive spectroscopy methods.

STAR, 2401.06625 (Accepted by Nature)

Energy/time scales

Shape-frozen like snapshot in nuclear crossing (10⁻²⁵s << rotational time scale 10⁻²¹s)
 --probe entire mass distribution in the intrinsic frame via multi-point correlations.

Collective flow assisted nuclear structure imaging

Nuclear structure

Imaging

Final state

$$ho(r, heta,\phi)=rac{
ho_0}{1+e^{(r-R(heta,\phi))/a_0}}$$

 $R(\theta,\phi) = R_0(1+eta_2[\cos\gamma Y_{2,0}(\theta,\phi)+\sin\gamma Y_{2,2}(\theta,\phi)]+eta_3 Y_{3,0}(\theta,\phi))$

- Octupole deformation
- Triaxiality
- → Surface diffuseness
- $R_0 \rightarrow \text{Nuclear size}$

Many-body correlations

Initial Size

Radial Flow **Initial Shape**

 $F = - orall P(\epsilon)$

hydro-response

Anisotropic Flow

$$rac{d^2N}{d\phi dp_T} = N(p_T) \Biggl(\sum_n rac{ extstyle V_{ extbf{n}}}{ extstyle e^{-in\phi}}\Biggr)$$

High energy: Large multiplicity and boost invariance; approximate linear response in each event

- Constrain the initial condition by comparing nuclei with known structure properties.
- Reveal novel properties of nuclei by leveraging known hydrodynamic response.
- Study the unknown nuclear structure by heavy-ion collisions.

Snapshot imaging = tracing the intrinsic nuclear structure?

"...figuring out a pocket watch by smashing two together and observing the flying debris"

— Richard Feynman

Short-time scale imaging could see detailed shapes?

II. Nuclear structure in heavy ²³⁸U and intermediate ⁹⁶Ru and ⁹⁶Zr nuclei

$$ho(r, heta,\phi)=rac{
ho_0}{1+e^{(r-R(heta,\phi))/a_0}}$$
 $R(heta,\phi)=R_0(1+rac{oldsymbol{eta_2}[\cosoldsymbol{\gamma}Y_{2,0}(heta,\phi)+\sinoldsymbol{\gamma}Y_{2,2}(heta,\phi)]+eta_3Y_{3,0}(heta,\phi)+eta_4Y_{4,0}(heta,\phi))}$

W. Ryssens, G. Giacalone, B. Schenke and C. Shen, PRL130, 212302(2023)

DFT calculations predict a slightly small WS deformation $\beta_{2\mathrm{U}} \approx 0.28 o \beta_{2\mathrm{U.WS}} \approx 0.25$

$$eta_{
m 2U}pprox 0.28
ightarrow eta_{
m 2U,WS}pprox 0.25$$

corresponding to a larger volume deformation in presence of $\beta_{4\text{U}}\sim 0.1$ $\beta_{2,\text{body}}=\frac{4\pi}{3R_o^2A}\int d^3r \rho(\mathbf{r})r^2Y_{20}$

Low-energy estimate with rigid rotor assumption from B(E2) data $\beta_{2,\text{LD}} = \frac{4\pi}{5R_0^2Z}\sqrt{\frac{B(\text{E2})}{e^2}}$

$$eta_{
m 2U,LD} = 0.287 \pm 0.007 \quad \gamma_{
m U,LD} = 6^\circ - 8^\circ$$

B. Pritychenko et al., J.ADT.107, 1(2016) C. Y. Wu et al., PRC54, 2356(1996)

Evidence of deformation from system comparison

Two particle correlator:

Elliptic flow and size fluctuation are enhanced by the nuclear deformation effect.

PRL127, 242301(2021)

Reflecting the initial state from the nuclear geometry

v_n -[p_T] three particle correlator

$$\mathrm{cov}ig(v_n^2,[p_{\mathrm{T}}]ig) \equiv \left\langle rac{\sum_{i
eq j
eq k} w_i w_j w_k e^{in\phi_i} e^{-in\phi_j} (p_{\mathrm{T},k} - \left\langle\left\langle p_{\mathrm{T}}
ight
angle
ight
angle)}{\sum_{i
eq j
eq k} w_i w_j w_k}
ight
angle_{\mathrm{evt}}$$

$$[p_{
m T}] \equiv rac{\sum_i w_i p_{{
m T},i}}{\sum_i w_i}, \langle \langle p_{
m T}
angle
angle \equiv \langle [p_{
m T}]
angle_{
m evt}$$
 w_i is track weight

• $oldsymbol{arepsilon}_2$ and R are influenced by the quadrupole deformation eta_2

•
$$\langle \mathrm{p_T}
angle \sim$$
 1/R and $\mathrm{v_2} \propto \mathbf{\epsilon}_{\scriptscriptstyle 2} : \left\langle \epsilon_\mathrm{n}^2 rac{1}{R}
ight
angle
ightarrow \left\langle v_\mathrm{n}^2 \ p_\mathrm{T}
ight
angle$

deformation contributes to anticorrelation between v_2 and $\langle p_T \rangle$

Extracting shape of ²³⁸U: quadrupole deformation and triaxiality

Achieves a better description of ratios in UCC region

$$egin{aligned} \left\langle v_2^2
ight
angle &= a_1 + b_1 eta_2^2 \ \left\langle \left(\delta p_{
m T}
ight)^2
ight
angle &= a_2 + b_2 eta_2^2 \ \left\langle v_2^2 \delta p_{
m T}
ight
angle &= a_3 - b_3 eta_2^3 \cos(3\gamma) \end{aligned}$$

Constraints on β_2 of ²³⁸U from data comparison with hydro

$$eta_{
m 2U} = 0.297 \pm 0.013$$

$$\gamma_U = 8.6^\circ \pm 4.8^\circ$$

Understanding the nuclear deformation in the shorter time scale.

A novel way to quantify the shape of ²³⁸U.

Sanity/systematic check #1 : viscosity effect

Sanity/systematic check #2 : nuclear parameters effect

Effect from nuclear parameters are smaller and included as model systematics.

Sanity/systematic check #3 : different hydrodynamic models

Other hydrodynamics model (Trajectum) also shows rather consistent extractions even if it was not tuned to RHIC data.

check #1#2#3 of model systematics sources are included in the experimental paper.

Mean transverse momentum [p_T] fluctuations

$$\begin{array}{c}
S_A = S_B \\
R_A < R_B
\end{array} \Longrightarrow \boxed{\overline{p}_{t,A} > \overline{p}_{t,B}}$$

Same total energy deposition: Smaller transverse size, Stronger radial expansion.

$$\delta[p_{
m T}] \propto -\delta R \propto \delta d_{\perp}$$

Variance
$$\left\langle \left(rac{\delta[p_T]}{[p_T]}
ight)^2
ight
angle \propto \left\langle \left(rac{\delta d_\perp}{d_\perp}
ight)^2
ight
angle \propto eta_2^2$$

Mean

Skewness
$$\left\langle \left(rac{\delta[p_T]}{[p_T]}
ight)^3
ight
angle \! \propto \left\langle \left(rac{\delta d_\perp}{d_\perp}
ight)^3
ight
angle \propto cos(3\gamma) eta_2^3$$

Kurtosis
$$\left\langle \left(\frac{\delta[p_T]}{[p_T]} \right)^4 \right\rangle - 3 \left\langle \left(\frac{\delta[p_T]}{[p_T]} \right)^2 \right\rangle^2 \propto \left\langle \left(\frac{\delta d_\perp}{d_\perp} \right)^4 \right\rangle - 3 \left\langle \left(\frac{\delta d_\perp}{d_\perp} \right)^2 \right\rangle^2 \propto - \beta_2^4$$

Event-by-event [p_T] fluctuations also reflect the deformation of colliding nuclei

[p_T] fluctuations and comparisons to hydro model

Au+Au: variance and skewness follow independent source scaling 1/N_sⁿ⁻¹ within power-law decrease

U+U: large enhancement in normalized variance and skewness and sign-change in normalized kurtosis

→ size fluctuations enhanced

The nuclear deformation role is further confirmed by hydro calculations.

Hydro: private calculations from Bjoern Schenke and Chun Shen

 $[p_T]$ fluctuations also serve as a good observable to explore the role of nuclear deformation.

Other interesting questions remained:

- 1. More new observables also need to be investigated.
- 2. Current calculations are in 2D transverse profile, but how 3D will be?

2405.08749; 2408.16006

3. High-order deformations & "soft" or "rigid" Triaxiality.

PRL132, 262301(2024); 2405.09329; 2301.03556

4. Precise data-model comparisons and the accuracy of the initial state.

Structure of isobaric ⁹⁶Ru and ⁹⁶Zr nuclei:

$$ho(r, heta,\phi)=rac{
ho_0}{1+e^{(r-R(heta,\phi))/a_0}}$$
 $ho(r, heta,\phi)=R_0(1+rac{eta_2}{
ho_2}[\cos\gamma Y_{2,0}(heta,\phi)+\sin\gamma Y_{2,2}(heta,\phi)]+rac{eta_3}{
ho_3}Y_{3,0}(heta,\phi))$

Lower energies experimental measurement

$$eta_2 = rac{4\pi}{3ZR_0^2}\sqrt{rac{B(E2)\uparrow}{\mathrm{e}^2}} \qquad eta_3 = rac{4\pi}{3ZR_0^3}\sqrt{rac{B(E3)\uparrow}{\mathrm{e}^2}}$$

	$oxed{eta_2}$	$E_{2_{1}^{+}} \; ({ m MeV})$	eta_3	$E_{3_1^-}$ (MeV)
96 Rı	0.154	0.83	-	3.08
$^{96}\mathrm{Zr}$	0.062	1.75	0.202, 0.235, 0.27	1.90

Evidence of static octupole moments at low energies is rather sparse.

Pear-shaped nuclei enable new physics searches?

US Long Range Plan 2023

Sidebar 6.2 Radioisotope harvesting at FRIB for fundamental physics

The Facility for Rare Isotope Beams (FRIB) will yield the discovery of new, exotic isotopes and the measurement of reaction rates for nuclear astrophysics, and will produce radioactive isotopes that can be used for a broad range of applications, including medicine, biology, and fundamental physics.

Converting waste to wealth

Radioisotopes at FRIB are produced via fragmentation when accelerated ion beams interact with a thin target. Several isotopes, including those previously unobserved, across the entire periodic table will be produced in practical quantities for the first time in the water beam dump at the FRIB accelerator. The Isotope Harvesting Project provides a new opportunity to collect these isotopes, greatly enhancing their yield and real-time availability to enable a broad spectrum of research across multiple scientific disciplines. Isotopes will be extracted from the beam dump and chemically purified using radiochemistry techniques in a process called harvesting. Harvesting operates commensally, therefore providing additional opportunities for science.

Figure 1. A pear-shaped nucleus spins counterclockwise or clockwise, depending on the direction of time. [S47]

Pear-shaped nuclei enable new-physics searches

With uranium-238 ion beams, these methods can produce heavy, pear-shaped nuclei that can be used to search for violations of fundamental symmetries that would signal new forces in nature. For example, a nonzero permanent electric dipole moment (EDM) would break parity and time-reversal symmetries. Figure 1 shows a pear-shaped nucleus spinning under applied electric and magnetic fields. Its magnetic dipole moment (MDM) is nonzero, and if its EDM is also nonzero, then its spin-precession rate changes if the direction of time is reversed. Heavy, pear-shaped nuclei can greatly amplify the sensitivity to a nonzero EDM and complement neutron EDM studies. Pear-shaped isotopes such as radium-225 and protactinium-229 will be produced in abundance at FRIB, and their EDM effects can be further enhanced by using them to form polar molecules, which can then be probed using cutting-edge laser techniques. The unique sensitivity of these experiments opens otherwise inaccessible windows on new physics.

EDMs are very small and difficult to measure.

Higher sensitivity via Schiff nuclear moments in heavy nuclei

-> Octupole deformation enhancements

Hunt for the no neutrinos

Double beta decay which emits anti-neutrinos

Neutrinoless double beta decay

Isotope	$T_{1/2}^{0\nu} (\times 10^{25} \text{ y})$	$\langle m_{etaeta} angle ({ m eV})$	Experiment	Reference
⁴⁸ Ca	$> 5.8 \times 10^{-3}$	< 3.5 - 22	ELEGANT-IV	(157)
$^{76}{ m Ge}$	> 8.0	< 0.12 - 0.26	GERDA	(158)
	> 1.9	< 0.24 - 0.52	Majorana Demonstrator	(159)
$^{82}\mathrm{Se}$	$> 3.6 \times 10^{-2}$	< 0.89 - 2.43	NEMO-3	(160)
$^{96}{ m Zr}$	$> 9.2 \times 10^{-4}$	< 7.2 - 19.5	NEMO-3	(161)
$^{100}\mathrm{Mo}$	$> 1.1 \times 10^{-1}$	< 0.33 - 0.62	NEMO-3	(162)
$^{116}\mathrm{Cd}$	$> 1.0 \times 10^{-2}$	< 1.4 - 2.5	NEMO-3	(163)
$^{128}\mathrm{Te}$	$> 1.1 \times 10^{-2}$	_	_	(164)
$^{130}\mathrm{Te}$	> 1.5	< 0.11 - 0.52	CUORE	(124)
$^{136}\mathrm{Xe}$	> 10.7	< 0.061 - 0.165	KamLAND-Zen	(165)
	> 1.8	< 0.15 - 0.40	EXO-200	(166)
$^{150}\mathrm{Nd}$	$>2.0\times10^{-3}$	< 1.6 - 5.3	NEMO-3	(167)

⁹⁶Zr with high-case rate, strong neutrino mass limiting ability

$$T_{1/2}^{0
u} = \left(G|\mathcal{M}|^2 \langle m_{etaeta}
angle^2
ight)^{-1} \simeq 10^{27-28} igg(rac{0.01 \mathrm{eV}}{\langle m_{etaeta}
angle}igg)^2 \mathrm{y}$$

Unique isobar ⁹⁶Ru and ⁹⁶Zr Collisions

96
Ru+ 96 Ru and 96 Zr+ 96 Zr at $\sqrt{s_{NN}}=$ 200 GeV

- A key question for any HI observable (**):
- Expectation:

Relate to neutron skin:
$$\Delta r_{\rm np} = \langle r_n \rangle^{1/2} - \langle r_p \rangle^{1/2}$$
 charge
$$\Delta r_{np,{\rm Ru}} - \Delta r_{np,{\rm Zr}} \propto \left(R_0 \Delta R_0 - R_{0p} \Delta R_{0p} \right) + 7/3 \pi^2 (a \Delta a - a_p \Delta a_p)$$
 mass

$$rac{\mathcal{O}_{^{96}\mathrm{Ru}}+\mathcal{O}_{^{96}\mathrm{Ru}}}{\mathcal{O}_{^{96}\mathrm{Zr}}+\mathcal{O}_{^{96}\mathrm{Zr}}}\stackrel{?}{=}1$$

Deviation from 1 could have an origin in the nuclear structure, which impacts the initial state and then survives to the final state.

$$\mathcal{O} \approx b_0 + b_1 \beta_2^2 + b_2 \beta_3^2 + b_3 (R_0 - R_{0,ref}) + b_4 (a - a_{ref})$$

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{Ru}}{\mathcal{O}_{Zr}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Only probe structure differences

Species	β_2	β_3	a_0	R_0
Ru	0.162	0	$0.46~\mathrm{fm}$	$5.09~\mathrm{fm}$
Zr	0.06	0.20	$0.52~\mathrm{fm}$	$5.02~\mathrm{fm}$

difference	$\Delta \beta_2^2$	$\Delta \beta_3^2$	Δa_0	ΔR_0
difference	0.0226	-0.04	-0.06 fm	$0.07~\mathrm{fm}$

Nuclear structure via v_n ratio

- $\beta_{2Ru} \sim 0.16$ increase v_2 , no influence on v_3 ratio
- $\beta_{3Zr} \sim 0.2$ decrease v_2 in mid-central, decrease v_3 ratio
- Δa_0 = -0.06 fm increase v_2 mid-central, small impact on v_3
- Radius $\Delta R_0 = 0.07$ fm only slightly affects v_2 and v_3 ratio.

- Direct observation of octupole deformation in ⁹⁶Zr nucleus
- Clearly imply the neutron skin difference between ⁹⁶Ru and ⁹⁶Zr
- Simultaneously constrain these parameters using different N_{ch} regions

Nuclear structure influences everywhere

Isobar ratios cancel final state effect

- Vary the shear viscosity by changing partonic cross-section
 - Flow signal change by 30-50%, the v_n ratio unchanged.

Robust probe of initial state!

III. Benchmarking tomography of many-body correlation in 16O nucleus

--- from one-body distribution to many-body nucleon correlations

$$ho(r) \propto rac{1+wig(r^2/R^2ig)}{1+e^{(r-R)/a_0}} = --$$

→ first-principle ab initio framework

Hideki Yukawa

"for his prediction of the existence of mesons on the basis of theoretical work on nuclear forces"

Nucleon nucleon correlations in finite quantum many-body systems

"Double magic number" in $^{16}_{8}$ O nuclei, possible cluster inside based on the low energy.

Woods-Saxon: without many-body nuclear correlation

Nuclear Lattice Effective Field theory (NLEFT): model with many-nucleon correlation including α clusters

Lu et al., PLB797, 134863(2019)
M. Freer et al., RevModPhys90, 035004(2018)
Calculations from Dean Lee

Variational auxiliary field diffusion Monte Carlo (VMC):

MC solution of Schrödinger eq. from the time evolution of trial wave function.

A. Lonardoni et al., PRC97, 044318(2018)

J. Carlson and R. Schiavilla, RevModPhys70, 743(1998)

ab-initio Projected Generator Coordinate Method (PGCM):

Wave function from variational calculation (as in density functional theory)

Frosini et al., EPJA58, 62(2022); EPJA58, 63(2022); EPJA58, 64(2022) Calculations from Benjamin Bally

Geometric tomography of ¹⁶O nucleus for the first time in high energy

O+O run2021: 600M MB and 250M HM events

$$egin{aligned} &(v_n\{2\})^2=c_n\{2\}=\left\langle v_n^2
ight
angle \ &(v_n\{4\})^4=-c_n\{4\}=2{\left\langle v_n^2
ight
angle}^2-\left\langle v_n^4
ight
angle \end{aligned}$$

$$egin{aligned} arepsilon_2 \{2\}^2 &= \left\langle arepsilon_2^2
ight
angle \ arepsilon_2 \{4\}^4 &= 2 {\left\langle arepsilon_2^2
ight
angle}^2 - {\left\langle arepsilon_2^4
ight
angle} \end{aligned}$$

ε_2 {4} $/\varepsilon_2$ {2} from three models:

- 1. WS is away from STAR data.
- 2. VMC and EFT have a visible difference.

Can many-nucleon correlations significantly impact the eccentricity fluctuations? YES!

VMC and EFT theory have visible differences describing the $v_2\{4\}/v_2\{2\}$. The interplay between sub-nucleon fluctuation and many-nucleon correlation.

STAR, PRL130, 242301(2023)

Geometric scan elucidates nuclear tomography and strong nuclear force?

O+O and p+O at LHC Run2025 possible Ne+Ne collisions?

V. Conclusions and Outlooks

- 1. Understanding nuclear structure is crucial for nucleosynthesis, nuclear fission, and neutrinoless double beta decay et al.
- 2. As a novel tool to unveil nuclear structure, also could help better treat QGP initial conditions further understand fundamental structure in odd- or even-nuclei.
- 3. Decoding the nuclear structure utilizing many bulk tools via vast final state hadrons.
- 4. The signatures of nuclear structure in heavy-ion collisions are everywhere, robust and reliable: ---constrain quadrupole deformations and observe a slight triaxiality shape in ^{238}U $\beta_{2U}=0.297\pm0.013$ $\gamma_U=8.6^{\circ}\pm4.8^{\circ}$
- 5. Heavy ion collisions open the interdisciplinary connection between low- and high-energy.

 ---octupole and hexadecapole nuclear deformations, rigid and soft triaxiality, neutron skin, nuclear cluster in light nuclei

Expect more collaborations for understanding the nature of the shape of atomic nuclei!

Backup

Connecting the initial conditions to the nuclear shape

 $arepsilon_2 \sim 0.95 eta_2$

Random rotation

Tip-Tip

$$arepsilon_2 \sim 0$$

$oldsymbol{\epsilon}_2 = oldsymbol{\epsilon}_0 + oldsymbol{p}(\Omega_1,\Omega_2)eta_2 + \mathcal{O}(eta_2^2) \hspace{1cm} igspace \left\langle \epsilon_2^2 ight angle pprox \left\langle \epsilon_0^2 ight angle + 0.2eta_2^2$

Shape depends on Euler angle $\Omega = \Phi \theta \psi$

J. Jia, PRC105, 014905(2022)

$$\left<\epsilon_2^2\right>pprox\left<\epsilon_0^2\right>+0.2eta_2^2$$

$$\left\langle v_{n}^{2}\right
angle \propto\left\langle \epsilon_{n}^{2}
ight
angle$$

$$ho(r, heta,\phi)=rac{
ho_0}{1+e^{(r-R(heta,\phi))/a_0}}$$

$$R(heta,\phi) = R_0(1 + eta_2[\cos\gamma Y_{2,0}(heta,\phi) + \sin\gamma Y_{2,2}(heta,\phi)] + eta_3 Y_{3,0}(heta,\phi))$$

- In principle, can measure any moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$
 - Mean
 - Variance $\langle \varepsilon_n^2 \rangle, \, \left\langle \left(\delta d_\perp / d_\perp \right)^2 \right\rangle$
 - Skewness $\langle \varepsilon_n^2 \delta d_\perp / d_\perp \rangle$, $\langle (\delta d_\perp / d_\perp)^3 \rangle$
 - Kurtosis $\left\langle \varepsilon_n^4 \right\rangle 2 \left\langle \varepsilon_n^2 \right\rangle^2, \left\langle \left(\delta d_\perp/d_\perp \right)^4 \right\rangle 3 \left\langle \left(\delta d_\perp/d_\perp \right)^2 \right\rangle^2$
- All have a simple connection to deformation
 - Two-points correlation
- Three-points correlation

$$egin{array}{l} ig\langle arepsilon_2^2 ig
angle \sim a_2 + b_{2,2} ig\langle eta_2^2 ig
angle + b_{2,3} ig\langle eta_3^2 ig
angle \ ig\langle arepsilon_3^2 ig
angle \sim a_3 + b_{3,3} ig\langle eta_3^2 ig
angle + b_{3,4} ig\langle eta_4^2 ig
angle \end{array}$$

$$\left\langle arepsilon_{4}^{2}
ight
angle \sim a_{4}+b_{4,4}\left\langle eta_{4}^{2}
ight
angle$$

$$\left\langle \left(\delta d_{\perp}/d_{\perp}
ight)^{2}
ight
angle \sim a_{0}+b_{0}eta_{2}^{2}+b_{0,3}eta_{3}^{2}$$

$$egin{array}{c} raket{arepsilon_2^2}\sim a_2 + b_{2,2}raket{eta_2^2} + b_{2,3}raket{eta_3^2} & raket{arepsilon_2^2\delta d_\perp/d_\perp}\sim a_1 - b_1\cos(3\gamma)eta_2^3 \ raket{arepsilon_2^3}\sim a_3 + b_{3,3}raket{eta_3^2} + b_{3,4}raket{eta_4^2} \ raket{eta_4^2}\sim a_4 + b_{4,4}raket{eta_4^2} \end{array} egin{array}{c} raket{arepsilon_2^2\delta d_\perp/d_\perp}\sim a_1 - b_1\cos(3\gamma)eta_2^3 \ raket{\delta_4^2}\sim a_2 - b_2\cos(3\gamma)eta_2^3 \end{array}$$