Strangeness production at high baryon density in STAR BES-II FXT experiment

Yaping Wang (王亚平)

Central China Normal University (华中师大)

Collaborators: Wenyun Bo, Junyi Han, Hongcan Li, Li'Ang Zhang, et al. (CCNU) Guannan Xie (UCAS), Yingjie Zhou (GSI) Yue-Hang Leung (Heiderburg Univ.)

- Introduction
- STAR BES-II FXT experiment
- Strangeness production at high baryon density
- Summary and outlook

Explore QCD Phase Diagram

- > At $\mu_B = 0$, smooth crossover (LGT + data)
- > At large μ_B , 1st order phase transition \rightarrow QCD critical point

Strangeness Probe to Study the Nuclear Matter

STAR BES-I: Phys. Rev. C 102 (2020) 34909

- Rich structure in strangeness excitation functions
 - Production mechanisms is different at low and high energies (high and low baryon density)
 - □ Partonic interaction (pair production)
 - $gg \rightarrow s\overline{s} \text{ or } q\overline{q} \rightarrow s\overline{s}$
 - □ Hadronic interaction (associated production)
 - $BB \rightarrow BYK \text{ or } BB \rightarrow B\Xi KK$

B: N, p, Δ , etc. Y: Λ , Σ , etc. K: K⁺, K⁰

- Baryon-dominated to meson-dominated transitions
 - **D** Λ/π peaks at $\sqrt{s_{\rm NN}} \sim 8$ GeV
 - → Model: Baryon density maximal at $Vs_{NN} \sim 8 \text{ GeV}$
- Scarce data at low energy, more data is needed!

 → Connections to the softness of dense nuclear matter, phase boundary, and onset of deconfinement

STAR BES-II FXT Experiment

STAR BES-II ($\sqrt{s_{NN}} = 3 \sim 54.4 \text{ GeV}$)

- > 10x statistics compared to BES-I
- > Detector upgrades: iTPC, eTOF, EPD
- FXT extends energy down to 3 GeV

 New results from BES-II data at 3.0, 3.2, 3.5, 3.9, 4.5 GeV (5.2 to 7.7 GeV ongoing)

Particle Identification

- Strange hadrons (K_S^0 , ϕ , Λ^0 , Ξ^- , ...) are reconstructed via invariant mass method by identified decay daughters
- > TPC (dE/dx) and TOF (β) for charged pion and proton identification > TOF m^2 formula: $m^2 = p^2 \left(\frac{1}{\beta^2} - 1\right)$

Strange Hadron Reconstruction & Acceptance

- KFParticle package is used for the reconstruction to improve the signal significance
- Combinatorial backgrounds are reconstructed by rotation (mixing-event) method
- Particle rapidity coverage from beam rapidity to mid-rapidity

Oct. 10-15, 2024

Strange Hadron p_T Spectra

> Comprehensive strangeness (K⁻, K_S^0 , Φ , Λ^0 and Ξ^-) measurements at different energies from 3 to 4.5 GeV

Oct. 10-15, 2024

Strange Hadron p_{T} Spectra

> Comprehensive strangeness (K⁻, K_S^0 , $\boldsymbol{\Phi}$, Λ^0 and Ξ^-) measurements at different energies from 3 to 4.5 GeV

Oct. 10-15, 2024

Strange Hadron Rapidity Density Distribution

- Rapidity distributions are fit to Gaussian distribution to extrapolate to the unmeasured rapidity region
- UrQMD reproduces the yields of Λ, but overestimates K_s⁰, K⁻, Ξ⁻ and underestimates φ mesons

Strange Hadron Yields vs N_{part}

- > Universal $\langle N_{part} \rangle$ dependence of strangeness production, rise stronger than linear with $\langle N_{part} \rangle$
- Scaling with absolute amount of strangeness, not with individual hadron states
 - ✓ Single strange hadrons $K_{\rm S}^0$ and Λ^0 follow the common scaling trend
 - Double strange hadron Ξ^- deviate from the trend

Oct. 10-15, 2024

Energy Dependence of Scaling Parameter α_s

STAR BES-I: Phys. Rev. C 102 (2020) 34909 HADES: Phys.Lett.B 793 (2019) 457-463

- Rapid decrease of scaling parameter α_S for Ξ^- from 4.5 to 7.7 GeV, and saturate at high energy
 - Strange hadron production predominantly from hadronic interactions at $\sqrt{s_{NN}} < 4.5$ GeV
 - The mechanism of strange hadron production may change
- UrQMD qualitatively reproduces the energy dependence, but cannot quantitatively describe all energies
 - likely due to missing medium effects

UrQMD: cascade mode, hard EOS

S.A. Bass, et.al. Prog. Part. Nucl. Phys. 41 (1998)

Oct. 10-15, 2024

Strangeness Excitation Function

STAR BES-I: Phys. Rev. C 102 (2020) 34909 STAR: Phys. Rev. C 102, 034909 (2020) HADES: Phys. Lett. B 793 (2019) 457-463 Rich structure in these excitation functions
 ✓ Connections to the softness of dense nuclear matter, phase boundary, and onset of deconfinement

- First measurement of E⁻ at nearthreshold energies in Au+Au collisions

H.C. Li@sQM2024, Y.J. Zhou@CPOD2024

Oct. 10-15, 2024

Mid-rapidity Yield Ratio

STAR BES-I: Phys. Rev. C 102, 034909 (2020) THERMUS: Comput. Phys. Commun. 180 (2009) Thermal parameters (T and μ_h): V. Vovchenko et. al., Phys. Rev. C 93, 064906 (2016)

Comparison with thermal model

UrQMD: cascade mode, hard EOS

- > Canonical Ensemble (CE) with strangeness correlation length r_c = 2.9 3.9 fm simultaneously describes K_s^0/Λ , Λ/p and Ξ^-/Λ in the whole energies, but GCE fails at low energies
- ightarrow Change of medium properties at the high baryon density region

Physics Letters B, 2022, 831: 137152

Mid-rapidity Yield Ratio

H.C. Li@sQM2024, Y.J. Zhou@CPOD2024

200

200

 $\sqrt{s_{NN}}$ (GeV)

- **Comparison with transport model**
 - UrQMD and AMPT models cannot describe all data
 - \succ Strange baryons, especially for the Ξ^- , are sensitive probes to the medium properties
 - $\succ \Lambda/\pi$ and Ξ^{-}/π seems to show a different maximum position

STAR区域研讨会 – 王亚平

3

5

10

2

30

Collision Energy

Baryon to Meson Yield Ratio

H.C. Li@sQM2024, Y.J. Zhou@CPOD2024

STAR BES-I: Phys. Rev. C 102, 034909 (2020)

- At high energies ($\sqrt{s_{NN}}$ > 7.7 GeV), Λ/K_S^0 is enhanced in central collisions
- Λ/K_S^0 enhancement is not observed at 3 GeV in the measured p_T range

Baryon to Meson Yield Ratio

• Λ/K_S^0 is enhanced in 1.2 < p_T < 1.4 GeV/c in central collisions at above $\sqrt{s_{NN}}$ = 3.9 GeV \rightarrow Possible change of medium properties

Average Transverse Momentum

 $\succ \langle p_{\rm T} \rangle$ vs. $\langle N_{\rm part} \rangle$ consistent with radial flow caused by hadronic interactions

- ✓ Gradual increase in $\langle p_T \rangle$ as $\langle N_{part} \rangle$ increase
- ✓ Data show $\langle p_{\rm T} \rangle^{K^-} \approx \langle p_{\rm T} \rangle^{K^0_{\rm S}} < \langle p_{\rm T} \rangle^{\emptyset} \approx \langle p_{\rm T} \rangle^{\Lambda} \approx \langle p_{\rm T} \rangle^{\Xi^-}$ following mass hierarchy
- ✓ Data show $\langle p_T \rangle^{\Lambda} < \langle p_T \rangle^p$, possibly due to smaller Y-N interaction than N-N interaction

> Transport model with baryon mean field offer consistent $\langle p_T \rangle$ for p, Λ , and Ξ^-

Oct. 10-15, 2024

Average Transverse Momentum

- ➢ Below 11.5 GeV, *A* tends to be smaller than proton, while they are compatible at 11.5 GeV or higher
- Transport model (UrQMD) offers consistent $\langle p_T \rangle$ for Λ , and Ξ below 5 GeV, but fails at 7.7 GeV and higher energies

→ Transition from a hadronic interaction dominated matter to matter dominated by quark degrees of freedom somewhere between 4.5 and 7.7 GeV?

Kinematic Freeze-out Properties

Summary and outlook

- ➢ Precision measurements of strange hadrons production in Au+Au collision at $\sqrt{s_{\rm NN}}$ = 3.0 − 4.5 GeV
 - 1) Steeper centrality dependence of Ξ^- mid-rapidity yields (α_S) at $\sqrt{s_{\rm NN}}$ = 3.0 4.5 GeV than that at higher energies
 - 2) Canonical suppression of strangeness is observed below $\sqrt{s_{NN}}$ = 3.5 GeV
 - 3) Baryon-to-meson ratio (Λ/K_S^0) enhancement not observed at $\sqrt{s_{NN}} = 3.0 3.5$ GeV, but observed at above 3.9 GeV energies
 - 4) Freeze-out parameters ($T_{kin.}$, $\langle \beta_T \rangle$) of p, Λ and K_S^0 at 3 GeV do not follow the same trend as π , K, p at 7.7 200 GeV

More precise and systematic measurements of strange hadron (K^{\pm} , ϕ , Ω^{-} etc.) production from BES-II ($\sqrt{s_{NN}}$ = 5.2, 6.2, 7.2, 7.7 GeV)

Summary and outlook

Oct. 10-15, 2024

