Light Nuclei Collectivity in Heavy-Ion Collisions at High Baryon Density

中国科学院近代物理研究所

2024年10月12日

STAR区域研讨会(2024年10月10日-10月14日)

- Introduction
- Collective flow measurements for light nuclei (v_1, v_2, v_3)
- Summary

Light nuclei production in heavy-ion collisions

- □ Affect the chemical composition, thermodynamical properties
- □ Abundant at high baryon density, unclear production mechanisms

何熊宏

Light nuclei production in heavy-ion collisions

- □ Affect the chemical composition, thermodynamical properties
- Abundant at high baryon density, unclear production mechanisms

Light nuclei production mechanisms

Thermal model assumption of thermal equilibrium

Nuclear Physics A 987, 144 (2019)

T_{cfo}=156 ±2 MeV Binding energy: ~MeV

Light nuclei production mechanisms

Thermal model assumption of thermal equilibrium

Nuclear Physics A 987, 144 (2019)

T_{cfo}=156 ±2 MeV Binding energy: ~MeV

Coalescence of nucleons

formed near kinetic freeze-out

Light nuclei production mechanisms

Thermal model assumption of thermal equilibrium

Nuclear Physics A 987, 144 (2019)

T_{cfo}=156 ±2 MeV Binding energy: ∼MeV

Coalescence of nucleons

formed near kinetic freeze-out

Kinetic transport

dynamical formation and dissociation

 $d+\pi \Leftrightarrow N+N$ $d+N \Leftrightarrow N+N+N$ $d+\pi \Leftrightarrow N+N+\pi$

Phys. Rev. C 99, 044907(2019)

Collective flow in heavy-ion collisions

Collective motion of particle (due to high pressure arising from compression of nuclear matter)

Anisotropic flow: non-central collision or initial fluctuations

$$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2\boldsymbol{\nu_n} \cos[n(\phi - \psi_{RP})]\right)$$

□ **V**₁: deflection happens during passing time

□ **V**₂: sensitive to initial eccentricity

□ **V**₃: fluctuation of overlap zone

Light nuclei flow

- Less affected by the thermal dispersion, carry more direct information on the EoS
- Coalescence model:
 - atomic mass number (A) scaling of collective flow (pure momentum space) $v_n^A(p_T, y) \approx A v_n^p(p_T/A, y) (v_n^p << 1)$

- Provide valuable information on production mechanisms, incompressibility, in-medium NN interactions
- Both proton and light nuclei are measurable

Light nuclei flow measurement

First measurement: Lawrence Berkeley Laboratory Plastic Ball/Wall detector system

EOS Collaboration Phys. Rev. Lett. 75, 2100(1995)

Proton flow at high baryon densities

dv₁/dy decreases with increasing energy and changes sign at higher collision energies

Proton flow at high baryon densities

dv₁/dy decreases with increasing energy and changes sign at higher collision energies

Negative v₂ (2-3.5 GeV): squeeze-out effect by the spectator;

Disappearance of partonic v_2 at 3 GeV

Directed Flow of Light Nuclei

Deuteron v₁ for $\sqrt{s_{NN}} \ge 7.7 \text{ GeV}$

STAR Collaboration, Phys. Rev. C 102, 044906 (2020)

Hint of positive of deuteron v₁ slopes within 7.7-39 GeV

 Both precise measurements and theoretical insight needed

Model calculations for deuteron v_1

 \Box Model calculations failed to describe both the proton and deuteron v₁

Model calculations for deuteron v_1

 \Box Model calculations failed to describe both the proton and deuteron v_1

 \Box Deuteron v₁ is much sensitive to evolution time(hadronic interactions)

Light nuclei v₁ at $\sqrt{s_{NN}} = 3 - 3.9$ GeV

Collision Energy

- 1. STAR Collaboration, Phys. Lett. B 827, 136941 (2022)
- 2. STAR Collaboration, Quark matter 2023

Mass number scaling holds at 3 GeV, tends to be broken at higher energies

Light nuclei v₁ at $\sqrt{s_{NN}} = 3 - 3.9$ GeV

2. STAR Collaboration, Quark matter 2023

Mass number scaling holds at 3 GeV, tends to be broken at higher energies

□ Triton v₁ is slightly stronger than that of ³He, neutron see a more repulsive mean-field?

FOPI Collaboration, Nuclear Physics A 876, 1 (2012)

STAR区域研讨会(2024年10月10日-10月14日)

Light nuclei v₁ slope at mid-rapidity

 \Box Flat dv₁/dy within 2-3 GeV(maximum), then decreases with the increasing collision energies

- □ Above 7.7 GeV, hint of positive slopes for deuteron v₁, the reason is unclear
- Pronounced energy dependence for heavier nuclei at high baryon density

Elliptic Flow of Light Nuclei

Light nuclei v₂ at $\sqrt{s_{NN}} \ge 14.6$ GeV

STAR Collaboration, Quark Matter 2023

Systematic deviation of around 20-30% from mass number scaling is observed for all light nuclei in measured energies.

Light nuclei v₂ at $\sqrt{s_{NN}} \ge 14.6$ GeV

STAR Collaboration, Quark Matter 2023

Coalescence afterburner calculations are in good agreement with data \rightarrow coalescence in both momentum and coordinate space are in important

Light nuclei v₂ at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

STAR Collaboration, Phys. Lett. B 827, 136941 (2022)

No mass number scaling! But v₁ has the scaling. Why?

Light nuclei v₂ at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

STAR Collaboration, Phys. Lett. B 827, 136941 (2022)

Light nuclei v₂ at $\sqrt{s_{NN}} \le 3.9 \text{ GeV}$

Mass hierarchy at mid-rapidity disappears at 3 GeV

bounce off

off plane squeeze-out

Energy dependence of light nuclei v₂ at mid-rapidity

- 1. STAR Collaboration, Phys. Lett. B 827, 136941 (2022)
- 2. STAR Collaboration, Quark Matter 2023
- 3. FOPI Collaboration, Nuclear Physics A 876, 1 (2012)

- Pronounced energy dependence with the increasing mass
- Location of the minimum value varies with the mass
- Zero crossing point is different for different light nucleus species

Triangular Flow of Light Nuclei

Light nuclei v₃

STAR Collaboration, Quark Matter 2023

Perfect mass number scaling within 10%

Light nuclei v₃ at high baryon density

何熊宏

Pronounced energy dependence of flow for heavier nuclei

- Production mechanisms:
 - 11.5-54 GeV ($\mu_{\rm B}$ < 315 MeV)
 - v₂ and v₃ consistent with coalescence model
 - Hint of positive deuteron v_1 slopes, opposite to those of protons

→ need more efforts

- 2-7.7 GeV (μ_B > 420 MeV)
 - Mass number scaling for $v_{1,}$ not for v_{2}
 - → coalescence model

Coalescence in both momentum and coordinate space

□ Hard EoS at high baryon density

Thank you for your attention!

