

Study of Hyperon Weak Radiative Decay at BESIII & R&D of Electromagnetic Calorimeter for STCF

Zekun Jia

Supervisor: Prof. Haiping Peng

University of Science and Technology of China

The Doctoral Dissertation Defense

Introduction

Standard Model

- The innermost structure of matter
 - Three generation of fermions
 - Four gauge bosons & Higgs boson
 - Hadrons formed by quarks and gluons
- Basic interactions among elementary particles
 - Strong: Quantum chromodynamics
 - Weak & Electromagnetic: Electroweak theory
 - Particle mass: Higgs mechanism

tau

neutrino

W boson

electron

neutrino

muon

neutrino

Standard Model of Elementary Particles

Introduction

Challenges facing the Standard Model

- The origin of hadron mass?
- □Inner structure of hadrons?
- Hadron decay mechanism?
 - Significant non-perturbation QCD effects
 - Hyperon: baryons containing s quarks
 - Proving ground of basic symmetries: SU(3), CP
 - Decay of ground hyperons:
 - •Weak hadronic decay ($\Sigma^+
 ightarrow p \pi^0$)
 - Semi-leptonic decay ($\Sigma^+ \rightarrow pev_e, \Sigma^+ \rightarrow pee$)
 - Weak radiative decay (WRHD) ($\Sigma^+ \rightarrow p\gamma$)

Overview

 \Box Flavor Changing Neutral Current process ($s \rightarrow d\gamma$ transition)

□A symphony of strong, weak and EM interaction

Effective Lagrangian

$$\mathcal{L} = \frac{eG_F}{2} \overline{Y}_f \left(a^{\mathbf{PC}} + b^{\mathbf{PV}} \gamma_5 \right) \sigma^{\mu\nu} Y_i F_{\mu\nu}$$

Decay width & decay asymmetry

$$\Gamma = \frac{e^2 G_F^2}{\pi} \left(|\boldsymbol{a}|^2 + |\boldsymbol{b}|^2 \right) \cdot \left| \vec{k} \right|^3$$
$$\alpha_{\gamma} = \frac{2 \operatorname{Re}(\boldsymbol{a}\boldsymbol{b}^*)}{|\boldsymbol{a}|^2 + |\boldsymbol{b}|^2}$$

$\Lambda \rightarrow n\gamma$	$\Xi^0 o \Lambda \gamma$
$\Sigma^+ \rightarrow p\gamma$	$\Xi^0 \to \Sigma^0 \gamma$
$\Sigma^0 \to n\gamma$	$\Xi^- \rightarrow \Sigma^- \gamma$
	$\Omega^- \to \Xi^- \gamma$

Effective Theory Point-of-view

□Hara's Theorem: $\alpha_{\gamma,\Sigma^+/\Xi^-} = 0$ under SU(3) symmetry

Various predictions based on: VMD, Broken SU(3), Pole Model, Quark Model, NRCQM, Baryon ChPT ...

Topology diagrams based on baryon ChPT sci.Bull. 67 (2022), 2298

- **:** share with weak hadronic decays
- •: determined by octet baryon magnetic moments

Meson-Baryon interaction vertex: share with semi-leptonic decays

Effective Theory Point-of-view

•Unique contribution from "direct photon emission"

•Need experiment input from $\Xi^0 \to \Lambda(\Sigma^0)\gamma$ or $\Lambda \to n\gamma$ process

$$\begin{aligned} \operatorname{Re}(b)_{\Xi^{0}\Sigma^{0}} &= \sqrt{3}\operatorname{Re}(b)_{\Xi^{0}\Lambda} & \operatorname{Re}(b)_{\Lambda n} &= -\operatorname{Re}(b)_{\Xi^{0}\Lambda} \\ \operatorname{Re}(b)_{\Sigma^{0}n} &= -\sqrt{3}\operatorname{Re}(b)_{\Xi^{0}\Lambda} & \operatorname{Re}(b)_{\Sigma^{+}p} &= \operatorname{Re}(b)_{\Xi^{-}\Sigma^{-}} &= 0 \end{aligned}$$

Some Conclusions

WRHDs contain the same FF information of hyperons as weak hadronic decay & semi-leptonic decay

New FF contributions introduced by the decays sensitive to QCD models

High precision experiment inputs are indispensable to understand the decay mechanism

Physics Beyond the Scope of QCD Phenomenon

DNew physics in $Y_i \rightarrow Y_f l^+ l^-$ decay

• Smoke screen of new physics in $\Sigma^+ \rightarrow p \mu^+ \mu^-$ decay

Phys.Rev.Lett. 94 (2005) 021801, Phys.Rev.Lett. 120 (2018) 22, 221803

Experiment results of WRHDs provide SM expectations on such decays – narrowing the range for NP! JHEP 10 (2018) 040, JHEP 02 (2022) 178

Physics Beyond the Scope of QCD Phenomenon

CP violation in radiative decays

•CP violation in heavy flavor radiative decays extensively predicted under SM

Decrease as quark mass decreases

• May be significantly enhanced by NP up to $\mathcal{O}(10)\%$

Phys.Rev.Lett. 109 (2012), 171801, JHEP 01 (2013) 027, JHEP 04 (2017) 027, JHEP 08 (2017) 09

Extensive experimental studies on K, D and B meson decays

Channel	SM predicted A_{CP}	Decay Mode	Exp. A_{CP}	Decay Mode	Exp. A_{CP}
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	$2 \times 10^{-6} - 1 \times 10^{-5}$	$K^{\pm} ightarrow \pi^{\pm} \pi^{0} \gamma$	0.0000 ± 0.0012	$B^+ \to \eta K^+ \gamma$	-0.12 ± 0.07
$K_{I} \rightarrow \pi^{+}\pi^{-}\nu$	$10^{-4} - 10^{-3}$	$D^0 o ho \gamma$	0.06 ± 0.15	$B^+ \to \phi K^+ \gamma$	-0.13 ± 0.11
$D \rightarrow 0\gamma$	$< 2 \times 10^{-3}$	$D^0 o \phi \gamma$	-0.09 ± 0.07	$B^+ \to \rho^+ \gamma$	-0.11 ± 0.33
$b \rightarrow sy$	(0.1 - 1)%	$D^0, \overline{D}^0 \to \overline{K}^*(892)^0 \gamma$	-0.003 ± 0.020	$B^0 \rightarrow K^*(892)^0 \gamma$	-0.006 ± 0.011
$b \rightarrow d\gamma$	(1-10)%	$B^+ \rightarrow K^*(892)^+ \gamma$	0.014 ± 0.018	$B^0 \to K_2^* \ (1430)^0 \gamma$	-0.08 ± 0.15
$B o ho \gamma$	~10 %	$B^+ \to X_S \gamma$	0.028 ± 0.019	$B^0 \rightarrow X_s \gamma$	-0.009 ± 0.018

Physics Beyond the Scope of QCD Phenomenon

CP violation & WRHDs

- Limited studies in baryon sector
- •Unified WRHD theory is the basis for related research

Two CP observables:

$$\Delta_{CP} = \frac{\mathrm{BF}_{+} - \mathrm{BF}_{-}}{\mathrm{BF}_{+} + \mathrm{BF}_{-}} \qquad A_{CP} = \frac{\alpha_{+} + \alpha_{-}}{\alpha_{+} - \alpha_{-}}$$

SM predictions on $\Sigma^+ o p \gamma$	Δ_{CP}	A _{CP}
Phys.Rev.D 51 (1995), 227	$10^{-5} - 10^{-4}$	
Commun.Theor.Phys. 19 (1993) 475		$10^{-5} - 10^{-4}$
arxiv:2312.17568	2×10^{-5}	

Experiment Research Status

□ Fixed target experiments govern the results before 2022 (~23 papers from over 5 experiment groups)

To solve the problems

Date	Expriment	BE (×10°)	α_{γ}	1987	SPEC	0.227 ± 0.102	-	
2022 1994	BESIII E761	$\begin{array}{c} 0.846 \pm 0.039 \pm 0.0 \\ 1.75 \pm 0.15 \end{array}$	$-0.160 \pm 0.101 \pm 0.046$			$\Omega^-\to \Xi^-\gamma$		
1992	SPEC	1.78 ± 0.24	-	Date	Expriment	BF (×10 ⁻³)	α_{γ}	
				1994	E761	< 0.46	-	
				1984	SPEC	< 0.22	-	
				1979	SPEC	< 0.31	-	

Same-Sian

Studies on weak radiative hyperon decays at BESIII

BEPCII & BESIII

Uniquely pair-produced hyperons from ψ decay, e.g. $e^+e^- \rightarrow J/\psi \rightarrow Y\overline{Y}$

Over 70 million hyperon pair events collected from 2009-2019

		Decay Channel	BF ($ imes 10^{-3}$)	$N_{ m evt}$ ($ imes$ 10 ⁶)
Data sets	Number of J/ψ events ($ imes 10^6$)	$J/\psi ightarrow \Lambda\overline{\Lambda}$	1.89 ± 0.09	19.1
2009	224.0 ± 1.3	$J/\psi ightarrow \Sigma^+ \overline{\Sigma}^-$	1.07 ± 0.04	10.8
2012	$1\ 088.5 \pm 4.4$	$J/\psi ightarrow \Sigma^0 \overline{\Sigma}{}^0$	1.17 ± 0.03	11.8
2018	07740 + 204	$J/\psi ightarrow \Sigma^- \overline{\Sigma}^+$		~15
2019	8 / / 4.0 <u>⊤</u> 39.4	$J/\psi ightarrow \Xi^0 \overline{\Xi}{}^0$	1.17 ± 0.04	11.8
Total	$10\ 087 \pm 44$	$J/\psi ightarrow \Xi^- \overline{\Xi}^-$	0.97 ± 0.08	9.8
		Total		~78

Decay Parameter Study

Upperon spin correlation & Decay parameter measurement

• e.g.
$$e^+e^- \to J/\psi \to \Xi^0(\to\Lambda\gamma)\overline{\Xi}^0(\to\overline{\Lambda}\pi^0) \quad \Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi$$

Decay amplitude (Helicity):

$$\mathcal{W} = \sum_{\mu,\nu=0}^{3} \sum_{\mu'=0}^{3} \sum_{\nu'=0}^{3} C_{\mu\nu} a_{\mu\mu'}^{\Xi} a_{\mu'0}^{\Lambda} a_{\nu\nu'}^{\overline{\Xi}} a_{\nu'0}^{\overline{\Lambda}}$$

Helicity angles: $\theta_{\Xi}, \theta_{\Lambda}, \phi_{\Lambda}, \theta_{\overline{\Lambda}}, \phi_{\overline{\Lambda}}, \theta_{p}, \phi_{p}, \theta_{\overline{p}}, \phi_{\overline{p}}$ Decay parameters: $\alpha_{J/\psi}, \Delta \Phi_{\Psi}, \alpha_{\Xi}, \Delta \Phi_{\Xi}, \alpha_{\overline{\Xi}}, \Delta \Phi_{\overline{\Xi}}, \alpha_{\Lambda}, \alpha_{\overline{\Lambda}}$

Decay Parameter Study

C: polarization and spin correlation matrix **D***a*: decay matrices of hyperons of $Y\overline{Y}$

$$\begin{split} C_{00} &= 2(1 + \alpha_{\Psi} \cos^{2} \theta_{\Xi^{0}}), & C_{20} &= -C_{02}, \\ C_{02} &= 2\sqrt{1 - \alpha_{\Psi}^{2}} \sin \theta_{\Xi^{0}} \cos \theta_{\Xi^{0}} \sin(\Delta \Phi_{\Psi}), & C_{22} &= \alpha_{\Psi}C_{11}, \\ C_{11} &= 2\sin^{2} \theta_{\Xi^{0}}, & C_{31} &= -C_{13}, \\ C_{13} &= 2\sqrt{1 - \alpha_{\Psi}^{2}} \sin \theta_{\Xi^{0}} \cos \theta_{\Xi^{0}} \cos(\Delta \Phi_{\Psi}), & C_{33} &= -2(\alpha_{\Psi} + \cos^{2} \theta_{\Xi^{0}}) \end{split}$$

DBESIII observation of non-zero $\Delta \Phi_{\Psi}$

 Transverse polarization and spin-correlation between hyperon pairs Nature Phys. 15 (2019), 631

Decay	$lpha_{J/\psi}$	$\Delta \Phi_{\Psi}$	Polarization (%)
$J/\psi ightarrow \Lambda ar\Lambda$	$0.475 \pm 0.002 \pm 0.003$	$0.752 \pm 0.004 \pm 0.007$	24.7
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	$-0.508 \pm 0.006 \pm 0.004$	$-0.270 \pm 0.012 \pm 0.009$	16.4
$J/\psi ightarrow \Xi^- \bar{\Xi}^+$	$0.586 \pm 0.012 \pm 0.010$	$1.213 \pm 0.046 \pm 0.016$	30.1
$J/\psi \to \Xi^0 \bar{\Xi}^0$	$0.514 \pm 0.006 \pm 0.015$	$1.168 \pm 0.019 \pm 0.018$	32.1

$$\beta = \sqrt{1 - \alpha^2} \sin(\Delta \Phi), \gamma = \sqrt{1 - \alpha^2} \cos(\Delta \Phi)$$
• For $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ + 0^- \operatorname{decay} (\Xi^0 \rightarrow \Lambda \pi^0)$

$$a_n^{\Xi} = \begin{pmatrix} 1 & 0 & 0 & \alpha \\ \alpha \cos\phi \sin\theta & \gamma \cos\theta \cos\phi - \beta \sin\phi & -\beta \cos\theta \cos\phi - \gamma \sin\phi & \sin\theta \cos\phi \\ \alpha \sin\theta \sin\phi & \beta \cos\phi + \gamma \cos\theta \sin\phi & \gamma \cos\phi - \beta \cos\theta \sin\phi & \sin\theta \sin\phi \\ \alpha \cos\theta & -\gamma \sin\theta & \beta \sin\theta & \cos\theta \end{pmatrix}$$
• For $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ + 1^- \operatorname{decay} (\Xi^0 \rightarrow \Lambda \gamma)$

$$a_r^{\Xi} = \begin{pmatrix} 1 & 0 & 0 & -\alpha \\ \alpha \cos\phi \sin\theta & 0 & 0 & -\sin\theta \cos\phi \\ \alpha \sin\theta \sin\phi & 0 & 0 & -\sin\theta \sin\phi \\ \alpha \cos\theta & 0 & 0 & -\cos\theta \end{pmatrix}$$

- Decay parameters fitted from amplitude
 - Sensitivity multiplicated by several times Chin. Phys. C 47 (2023), 093103

Absolute BF Measurement

Double-tag method for BF measurement

 $BF = \frac{N_{DT}}{N_{ST}} \times \frac{\varepsilon_{ST}}{\varepsilon_{DT}}$

Datasets

Data

- 10 B J/ψ data accumulated in 2009-2019
- MC sample
 - 10 B J/ψ inclusive MC
 - Signal MC
 - ●1 M DIY MC
 - ●1 M PHSP MC
 - Exclusive MC

Input parameters for DIY MC Phys.Rev.Lett. 125 (2020) 5, 052004		
$lpha_{J/\psi}$	-0.508	
$\Delta \Phi_{\Psi}$	-0.270	
$lpha_{\Sigma^+ o p \pi^0}$	-0.980	
$\alpha_{\Sigma^+ \to p\gamma}$	-0.652	

Measurement of the Decay $\Sigma^+ \rightarrow p\gamma$ Event Selection - ST

Charged tracks:

• $V_r < 2 \text{ cm}, |V_z| < 10 \text{ cm}, |\cos\theta| < 0.93$

 $\bullet n_{\rm c.t.} \leq 2$

□Particle ID:

• p/\bar{p} criteria:

• $prob(p) > prob(\pi)$ and prob(p) > prob(K)

Momentum > 0.5 GeV/c (Kinematic constraint)

 $\bullet n_{\bar{p}} \geq 1$

Neutral tracks:

- Nominal energy&angular requirement
- •Angle between n.t. and c.t. larger than 10°
- •Angle between n.t. and \bar{p} larger than 20°

 $\bullet n_{\rm n.t.} \geq 2$

$\Box \pi^0$ Selection:

• Loop over all combinations of neutral tracks and preserve all π^0 candidates passing 1C fit

 $\bullet 116 < m_{\gamma\gamma} < 148 \; {\rm MeV}/c^2$

 $\begin{aligned} \boxed{\Sigma}^{-} \text{ Selection:} \\ \bullet \left| m_{\bar{p}\pi^{0}} - m_{\Sigma^{+}} \right| < 4.5 \text{ MeV}/c^{2} \\ \bullet M_{\text{rec}} = \sqrt{\left(E_{\text{cm}} - E_{\bar{p}} - E_{\pi^{0}} \right)^{2} - \left(\mathbf{p}_{\bar{p}} + \mathbf{p}_{\pi^{0}} \right)^{2}} \end{aligned}$

Measurement of the Decay $\Sigma^+ \to p \gamma$ ST Fit

 \square Signal shape: truth matched signal MC shape \otimes Gaussian

 $\Box J/\psi \rightarrow \Delta^+ \overline{\Delta}^-$ BKG shape: PHSP MC

Residual BKG: 3rd order Chebychev polynomial

Fit method: binned extended likelihood fit

□Fit range : $1.07 < M_{rec} < 1.32 \text{ GeV}/c^2$

Measurement of the Decay $\Sigma^+ \rightarrow p\gamma$ Event Selection - DT

Object number:

- 1 proton
- At least 1 photon candidate
- □Kinematic fit:
 - • $par{p}\pi^0\gamma$ hypothesis
 - •5 constraints: the total 4-Momentum, π^0 mass
 - Final state particles from ST are fixed
 - Loop over all signal photon candidates
 - Preserve the combination with the least χ^2_{5C}

Use proton momentum in the Σ^+ CoM frame to extract DT signal (p_p)

Dominant background: • $J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-, \Sigma^+ \rightarrow p\pi^0, \overline{\Sigma}^- \rightarrow \overline{p}\pi^0$ • $J/\psi \rightarrow \Delta^+ \overline{\Delta}^-, \Delta^+ \rightarrow p\pi^0, \overline{\Delta}^- \rightarrow \overline{p}\pi^0$

Measurement of the Decay $\Sigma^+ \rightarrow p\gamma$ DT Background Study

Introduce 1 more photon into 5C fit

 $\bullet \chi^2_{5C,4\gamma} > \chi^2_{5C,3\gamma}$

□Optimize χ^2_{5C} cut in signal region $0.21 < p_p < 0.24 \text{ GeV}/c$ • Require $\chi^2_{5C} < 30$

Measurement of the Decay $\Sigma^+ \rightarrow p\gamma$ DT Background Study

0.35

0.35

Measurement of the Decay $\Sigma^+ \rightarrow p\gamma$ DT Fit

Gaussian

 \otimes

Fit method: unbinned extended maximum likelihood fit

□Fit range: $0.15 < p_p < 0.30 \text{ GeV}/c$

□signal MC shape: DIY MC

 $\Box \Sigma^+ \rightarrow p \pi^0$ BKG shape: DIY MC

Residual BKG: 2nd order Chebychev polynomial

Individual & simultaneous fits performed

Measurement of the Decay $\Sigma^+ \rightarrow p\gamma$ DT Fit

DT branching fraction:

$$BF = \frac{N_{DT}}{N_{ST}} \times \frac{\varepsilon_{ST}}{\varepsilon_{DT}}$$

Individual and simultaneous fit results consistent

Individual BF of two charge conjugate channels differs only 0.31σ

	$\big \qquad \Sigma^+ \to p \gamma$	$ $ $\bar{\Sigma}^- ightarrow \bar{p}\gamma$
ST Yield ε_{ST} (%) ε_{DT} (%) Individual BF Simultaneous BF	$ \begin{vmatrix} 2177771\pm2285\\ 39.02\\ 21.16\\ (1.007\pm0.032)\times10^{-3}\\ (0.997\pm0.032) \end{vmatrix} $	$ \begin{vmatrix} 2509380\pm2301 \\ 44.31 \\ 23.20 \\ (0.994\pm0.030)\times10^{-3} \\ 021)\times10^{-3} \end{vmatrix} $
Correction factor Corrected individual BF Corrected simultaneous BF	$ \begin{vmatrix} 0.998 \\ (1.005 \pm 0.032) \times 10^{-3} \\ (0.996 \pm 0.032) \end{vmatrix} $	$\begin{array}{c} 0.999 \\ (0.993 \pm 0.030) \times 10^{-3} \\ 021) \times 10^{-3} \end{array}$

Decay Asymmetry Parameter Measurement

Further requirements to improve signal purity

Signal region: $0.215 < p_p < 0.235 \text{ GeV}/c$

 $\Box \chi_{\gamma}^2 < \chi_{\pi^0}^2$ cut: treat signal photon as missing particle and compare χ^2 under two hypotheses, $m_{\gamma} = 0$ or $m_{\pi^0} = 0.135 \text{ GeV}/c^2$

Decay Asymmetry Parameter Measurement

Method: unbinned likelihood fit

 $\Box \text{Input parameters: } \xi = (\theta_{\Sigma}, \theta_p, \phi_p, \theta_{\bar{p}}, \phi_{\bar{p}})$

Likelihood construction:

$$\mathcal{L} = \prod_{i=1}^{N} \frac{\mathcal{W}_i(\xi, H)}{\mathcal{N}} \qquad \mathcal{N} = \frac{1}{N_{\text{MC}}} \sum_{j=1}^{N_{\text{MC}}} \mathcal{W}_i^{\text{MC}}(\xi, H)$$

• \mathcal{W}_i : differential cross section

• $H = \left(\alpha_{J/\psi}, \Delta \Phi_{\Psi}, \alpha_{\Sigma^+ \to p\gamma}, \alpha_{\overline{\Sigma}^- \to \overline{p}\pi^0} \right)$

Objective function minimization: MINUIT

Objective function:

$$S = -\ln \mathcal{L}_{data} + \ln \mathcal{L}_{bkg}$$

Construction of BKG likelihood:

• $\Sigma^+ \rightarrow p\pi^0$ BKG: extracted from DIY MC (5 $\times N_{data}$)

• Other BKG: Use data in sideband region ($0.088 < p_p < 0.1~{\rm GeV}/c, 0.204 < p_p < 0.216~{\rm GeV}/c)$ to estimate

Number of BKG: obtained from individual DT fit

 \Box Fit result of two c.c. process deviates 1.1 σ

Processes	$\Sigma^+ \to p\gamma$	$\bar{\Sigma}^- \to \bar{p}\gamma$
Individual fit	-0.587 ± 0.082	0.710 ± 0.076
Simultaneous fit	-0.651 =	± 0.056

Systematic Uncertainty Study

Source	BF uncertainty (%)
Tracking and PID	0.4
Photon detection	0.3
$\chi^{2} < 30$	0.8
$\chi^2_{5C} < \chi^2_{4\gamma}$	0.2
Decay length cut	0.4
Decay parameters	0.6
ST yield fit	0.4
Fit range	0.8
Signal shape	0.2
$\Sigma^+ \to p \pi^0$ shape	0.5
Polynomial background shape	0.8
Total Uncertainty	1.8

Source	α uncertainty
Tracking efficiency	0.001
Decay length cut	0.005
$\chi^2_{\gamma} < \chi^2_{\pi^0}$	0.006
Signal region cut	0.014
Background likelihood value	0.004
Background event number	0.002
Other decay parameters' uncertainty	0.011
Total uncertainty	0.020

Measurement of the Decay $\Xi^0 \to \Lambda \gamma$

Datasets

Data

- 10 B J/ψ data accumulated in 2009-2019
- MC sample
 - 10 B J/ψ inclusive MC
 - Signal MC for ST:
 - • $J/\psi \to \Xi^0 (\to \text{anything}) \overline{\Xi}^0 (\to \overline{\Lambda} \pi^0), \overline{\Lambda} \to \overline{p} \pi^+: 20 \text{ M}, \text{DIY}$
 - Signal MC for DT:

•
$$J/\psi \to \Xi^{0}(\to \Lambda \gamma)\overline{\Xi}^{0}(\to \overline{\Lambda}\pi^{0}), \overline{\Lambda} \to \overline{p}\pi^{+}$$
: 1.5 M, DIY, PHSP

Exclusive MC:

•
$$J/\psi \to \Xi^0 (\to \Lambda \pi^0) \overline{\Xi}^0 (\to \overline{\Lambda} \pi^0), \Lambda \to p \pi^-, \overline{\Lambda} \to \overline{p} \pi^+: 0.5 \text{ B, DIV}$$

• $J/\psi \to \overline{\Lambda} \Sigma^0 \pi^0 + \text{c.c. MC: } 20 \text{ M, DIV}$

Input parameters for DIY MC Phys.Rev.D 108 (2023) 3, L031106		
$lpha_{J/\psi}$	0.514	
$\Delta \Phi_{\Psi}$	1.168	
$\alpha_{\Xi^0 o \Lambda \pi^0}$	-0.375	
$\Delta \Phi_{\Xi^0 o \Lambda \pi^0}$	0.005	
$\alpha_{\overline{\Xi}^0 \to \overline{\Lambda} \pi^0}$	0.379	
$\Delta \Phi_{\overline{\Xi}^0 o \overline{\Lambda} \pi^0}$	-0.005	
$lpha_\Lambda$	0.755	
$lpha_{\overline{\Lambda}}$	-0.745	
$\alpha_{\Xi^0 o \Lambda \gamma}$	-0.749	
$\alpha_{\overline{\Xi}^0 \to \overline{\Lambda} \gamma}$	-0.749	

Measurement of the Decay $\Xi^0 \to \Lambda \gamma$ Event Selection - ST

Events / (0.3 cm)

Charged tracks:

• No requirements on V_r , V_z , $|\cos\theta|$

Particle ID:

 $\bullet p/\bar{p}$:

• $prob(p) > prob(\pi)$ and prob(p) > prob(K)

•Momentum > 0.3 GeV/*c*

• π^{\pm} : Tracks other than $p/ar{p}$

■ $\overline{\Lambda}$ Reconstruction (all candidates preserved): • Vertex fit on $\overline{p}\pi^+$ combinations • $|m_{\overline{p}\pi^+} - m_{\overline{\Lambda}}| < 6 \text{ MeV}/c^2$

Measurement of the Decay $\Xi^0 \to \Lambda \gamma$ Event Selection - ST

Photons:

- Nominal energy&angular requirements
- •Angle between n.t. and c.t. (\bar{p}) larger than 10° (20°)

 $\Box \pi^0$ Selection (all candidates preserved):

- •1C kinematic fit on $\gamma\gamma$ combinations
- 115 < $m_{\gamma\gamma}$ < 150 MeV/ c^2

Object number:

•
$$N_{\bar{p}} \ge 1, N_{\pi^+} \ge 1, N_{\bar{\Lambda}} \ge 1, N_{\pi^0} \ge 1$$

 $\Box \overline{\Xi}^0$ Selection

•
$$M_{\overline{\Lambda}\pi^0} = \sqrt{\left(E_{\overline{p}\pi^+} + E_{\pi^0}\right)^2 - \left(p_{\overline{p}\pi^+} + p_{\pi^0}\right)^2} - m_{\overline{p}\pi^+} + m_{\overline{\Lambda}}$$

• Signal region: $\left|m_{\overline{\Lambda}\pi^0} - m_{\overline{\Xi}^0}\right| < 12 \text{ MeV}/c^2$

Measurement of the Decay $\Xi^0 \to \Lambda \gamma$ ST Fit

$$M_{\rm rec} = \sqrt{\left(E_{\rm cm} - E_{\bar{p}\pi^+} - E_{\pi^0}\right)^2 - \left(\mathbf{p}_{\bar{p}\pi^+} + \mathbf{p}_{\pi^0}\right)^2}$$

□Fit range: $1.20 < M_{rec} < 1.45 \text{ GeV}/c^2$

 \Box Signal shape: truth matched signal MC shape \otimes Gaussian

Background shape:

Unmatched signal MC shape

• $J/\psi \rightarrow \overline{\Lambda}\Sigma^0 \pi^0$ + c.c. DIY MC shape

• $J/\psi \rightarrow \Sigma^{*0}\overline{\Sigma}^{*0}$ PHSP MC shape

• 3rd order Chebyshev polynomial

Bump-like BKG

Continuum BKG

Measurement of the Decay $\Xi^0 \to \Lambda \gamma$ Event Selection - DT

Object numbers:

 $\bullet N_p \geq 1$, $N_{\pi^-} \geq 1$, $N_{\text{n.t.}} \geq 1$, $N_{\Lambda} \geq 1$

 $\Box \Lambda \overline{\Lambda} \pi^0 \gamma$ Kinematic fit:

• 5 constraints: total 4-Momentum, π^0 mass • Minimizing χ^2_{5C}

Use Λ momenta in the Ξ^0 CoM frame (p_Λ) to extract DT signal

• p_{Λ} = 0.178 GeV/*c* for signal

Measurement of the Decay $\Xi^0 \to \Lambda \gamma$

DT Background Study

- For $\Sigma^{0(*)}$ associated background •Veto $L/\sigma_L < 2.0$
- For Σ^0 associated background • $m_{\gamma \overline{\Lambda}}$: The invariant mass of DT γ and ST $\overline{\Lambda}$ • $\left| m_{\gamma \overline{\Lambda}} - m_{\overline{\Sigma}^0} \right| > 12 \text{ MeV}/c^2$

Measurement of the Decay $\Xi^0 \rightarrow \Lambda \gamma$ DT Background Study

General purpose optimization • $\chi^2_{5c} < 40$

Measurement of the Decay $\Xi^0 \to \Lambda \gamma$ DT Fit

Gaussian

 \otimes

□Fit range: $0.1 < p_{\Lambda} < 0.25$ GeV/c

□Signal shape: DIY MC

 $\Box \Xi^0 \rightarrow \Lambda \pi^0$ BKG shape: DIY MC

Residual BKG: 1st order polynomial

Modes	$\Xi^0 ightarrow \Lambda \gamma$	$\bar{\Xi}^0 ightarrow \bar{\Lambda} \gamma$
ST Yield	1400541 ± 1989	1611216 ± 2111
$\varepsilon_{ m ST}$ (%)	17.61 ± 0.01	19.77 ± 0.01
$arepsilon_{ m DT}$ (%)	4.43 ± 0.02	4.77 ± 0.02
Individual BF	$(1.391 \pm 0.093) \times 10^{-3}$	$(1.344 \pm 0.099) \times 10^{-3}$
Simultaneous BF	$(1.379 \pm 0.068) \times 10^{-3}$	
Correction factor	1.032	1.014
Corrected individual BF	$(1.348 \pm 0.090) \times 10^{-3}$	$(1.326 \pm 0.098) \times 10^{-3}$
Corrected simultaneous BF	$(1.347 \pm 0.066) \times 10^{-3}$	

Measurement of the Decay $\Xi^0 \rightarrow \Lambda \gamma$

Decay Asymmetry Parameter Measurement

Signal region for fit: $0.170 < p_{\Lambda} < 0.190 \text{ GeV}/c$ (3 σ mass window)

Construction of \mathcal{L}_{bkg} : • $\Xi^0 \to \Lambda \pi^0$ BKG: DIY MC (100 × N_{data}) • Other BKG: Cocktail MC samples • $J/\psi \to \overline{\Lambda}\Sigma^0\pi^0$ +c.c. DIY MC shape • $J/\psi \to \Sigma^{*0}\overline{\Sigma}^{*0}$ PHSP MC shape

Number of BKG: Obtained from DT fit

Normalization factor obtained from DIY MC

$$\mathcal{N} = \frac{1}{N_{\rm MC}} \sum_{j=1}^{N_{\rm MC}} \frac{\mathcal{W}(\xi_i, H)}{\mathcal{W}(\xi_i, H_0)}$$

Processes	$ $ $\Xi^0 ightarrow \Lambda \gamma$	$ $ $\bar{\Xi}^0 \rightarrow \bar{\Lambda} \gamma$
Individual fit	-0.652 ± 0.092	0.830 ± 0.080
Simultaneous fit	-0.741 ± 0.062	
Measurement of the Decay $\Xi^0 \to \Lambda \gamma$

Systematic Uncertainties

/				
Source	$\mid \Xi^{0} \rightarrow \Lambda \gamma (\%)$	$ \bar{\Xi}^0 \rightarrow \bar{\Lambda} \gamma (\%)$	Combined (%)	
Selection Efficiency Related				
Proton tracking and PID	0.5	0.5	0.5	
Pion tracking and PID	2.3	1.4	1.8	
$\Lambda(\bar{\Lambda})$ reconstruction	0.9	1.1	1.0	
Photon detection	0.4	0.4	0.4	
$\chi^2_{5C} < 40$	0.5	0.1	0.3	
Decay length requirement	1.3	1.8	1.6	
$m_{\gamma\Lambda}$ requirement	0.2	0.0	0.1	
Decay parameters	0.6	0.6	0.6	
	ST Fit Related			
Fit range	0.5	0.4	0.5	
Bin width	0.5	0.6	0.6	
Signal shape	0.2	0.2	0.2	
Self background shape	0.2	0.7	0.5	
Continuum background shape	1.5	1.9	1.7	
Bump-like background	0.4	0.7	0.6	
	DT Fit Related			
Fit range	1.6	1.6	0.2	
$\Xi^0 \rightarrow \Lambda \gamma \text{ MC}$ shape	0.7	3.0	1.8	
$\Xi^0 \rightarrow \Lambda \pi^0$ MC shape	0.4	0.4	0.4	
Polynomial background shape	0.2	0.2	0.2	
$\mathcal{B}_{\Lambda o p\pi^-}$	0.8	0.8	0.8	
Total Uncertainty	4.0	5.0	4.0	

Source	$\Xi^0 ightarrow \Lambda \gamma$	$ \bar{\Xi}^0 \rightarrow \bar{\Lambda} \gamma$	Combined
Selection E	fficiency Rel	ated	
Track detection	0.001	0.001	0.001
$\chi^2_{5C} < 40$	0.001	0.002	0.002
Decay length requirement	0.001	0.001	0.001
$m_{\gamma\Lambda}$ requirement	0.001	0.001	0.001
Signal mass window	0.002	0.001	0.002
Fit	Related		
$\Xi^0 \rightarrow \Lambda \pi^0$ background yield	0.008	0.014	0.010
Continuum background yield	0.006	0.012	0.009
Continuum background model	0.012	0.040	0.013
Input parameters' uncertainty	0.002	0.002	0.002
Total Uncertainty	0.016	0.044	0.019

	$\Sigma^+ \to p \gamma$	$\bar{\Sigma}^- \to \bar{p}\gamma$		$\Xi^0\to\Lambda\gamma$	$\bar{\Xi}^0 \to \bar{\Lambda}\gamma$
$N_{ m ST}^{ m obs}$	$2177771{\pm}2285$	$2509380{\pm}2301$	$N_{ m ST}^{ m obs}$	$1400541{\pm}1989$	$1611216{\pm}2111$
$\varepsilon_{ m ST}$ (%)	$39.00 {\pm} 0.04$	44.31 ± 0.04	$\varepsilon_{\rm ST}$ (%)	$17.61 {\pm} 0.01$	$19.77 {\pm} 0.01$
$N_{ m DT}^{ m obs}$	1189 ± 38	1306 ± 39	$N_{ m DT}^{ m obs}$	308 ± 21	$330{\pm}25$
$\varepsilon_{ m DT}$ (%)	21.16 ± 0.03	23.20 ± 0.03	$\varepsilon_{\rm DT}$ (%)	$4.49 {\pm} 0.02$	$4.92 {\pm} 0.02$
Individual BF (10^{-3})	$1.005 {\pm} 0.032$	$0.993 {\pm} 0.030$	Individual BF (10^{-3})	$1.348 \pm 0.090 \pm 0.052$	$1.326 \pm 0.098 \pm 0.065$
Simultaneous BF (10^{-3})	$0.996 \pm 0.$	021 ± 0.018	Simultaneous $BF(10^{-3})$	1.347 ± 0.0	66 ± 0.052
Individual α_{γ}	$-0.587{\pm}0.082$	0.710 ± 0.076	Individual α_{γ}	$-0.652 \pm 0.092 \pm 0.016$	$0.830 \pm 0.080 \pm 0.044$
Simultaneous $\dot{\alpha}_{\gamma}$	-0.652 ± 0	0.056 ± 0.020	Simultaneous $\dot{\alpha}_{\gamma}$	$-0.741 \pm 0.$	062 ± 0.019

Published, Phys.Rev.Lett. 130 (2023) 21, 211901

BAM-760, waiting for SP's approval

 $\Box \Xi^0 \to \Lambda \gamma:$

• BF (α_{γ}) accuracy improved by 78 % (34 %) • Competitive accuracy to PDG values

•BF deviates from PDG by 4.2 σ

 $\Box \Sigma^+ \to p \gamma:$

The first determination of absolute BFs Precise α_{γ} with 100 times smaller statistics

Four established channels

No QCD model succeeds in predicting these BF & α_{γ} results

BESIII results have better accuracy/unbiasedness

Promote the establishment of unified WRHD theory

No evidence of CP violation within the limited statistics

- Comparable accuracy to radiative meson decays
- •SM prediction: $10^{-5} 10^{-4}$

	Δ_{CP}	A _{CP}
$\Sigma^+ \to p\gamma$	$0.006 \pm 0.011 \pm 0.004$	$0.095 \pm 0.087 \pm 0.018$
$\Xi^0\to\Lambda\gamma$	$-0.033 \pm 0.049 \pm 0.031$	$-0.120 \pm 0.084 \pm 0.029$

□ If there is an experiment with a statistics 100 times to BESIII

- •BF and α_{γ} measurement accuracy improved by ~10 times (statistical & systematic)
- Expected sensitivity on *CP* violation reaches O(0.1) O(1)%
- Validate unified WRHD theories & Test on NP enhanced CP violation

R&D on Electromagnetic Calorimeter of STCF

Super Tau-Charm Facility

Hadron Physics at τ -charm energy region

- Nucleon/Hadron form factors
- Lightest multiquark states
- LH spectroscopy
- Gluonic and exotic
- Hyperon physics
- τ physics & Ditauonium
- XYZ particles
- **CKM** matrix & γ angle
- $\Box f_D \text{ and } f_{D_s}$
- \square $D_0 \overline{D}_0$ mixing
- Charm baryons
- New XYZ particle
- Multiquark state
- Di-charmonium state
- Charm baryons
- Hadron fragmentation

Tackle challenges facing the SM with unprecedented statistics

Super Tau-Charm Facility

Project Overview

- □ Large Piwinski angle + Crab Waist □ Design $\mathcal{L} > 0.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
- $\Box \quad E_{\rm cm} = 2 7 \; {\rm GeV}$
- Potential for beam polarization

• 0.4–2 GeV π suppression > 30

RPC + Scint.

Challenges in Design and Operation

Introduction of STCF EMC Detection Unit

Radiation Hardness 100 krad LYSO BaF₂ Csl CsI(TI) BGO PWO 10 - 30 ns**Decay Time** BaF₂ **PWO** Csl LYSO BGO CsI(TI) 2000 / MeV Light Yield CsI(TI) LYSO BGO BaF₂ **PWO** Csl \$4.6 / g Price CsI(TI) PWO BGO LYSO Csl BaF₂

Magnetic Resistance		PD	APD S	SiPM
Dynamic range		PD	APD	SiPM
Q. E.	> 85%	APD	PD	SiPM
SNR	1000 e/cm ²	SiPM	APD	PD

• Undoped CsI:
$$5 \times 5 \times 28 \text{ cm}^3$$

• 250 μ m Teflon
• Si APD: 10 \times 10 mm² \times 4

Introduction of STCF EMC

Frontend Electronics

- High gain/Low gain: 33
- Maximum charge: >7200 fC
- •Noise: 2.0 fC

PZC

Decay time: 100 ns

•80 MHz; 14 bit

Introduction of STCF EMC Prototype Test

Y. Song, Z. K. Jia et al. Nucl.Instrum.Meth.A 1057 (2023), 168749

Introduction of STCF EMC Full Geometry

DBarrel: 6732 crystals (51×132); Endcap: 969 crystals

Non IP-oriented alignment to mitigate dead region

R&D on LY Enhanced Detection Unit Motivation

Light yield – The bottleneck of EMC performance

- Energy resolution of low energy photons
- Time resolution
- Pile-up recovery capability

R&D on LY Enhanced Detection Unit

Light Transportation Simulation

Speculation: LY subject to transmittance

□Validated by optical simulation @ Geant4

Table 1

Summary of the optical simulation parameters and result.

Component	UV	VIS
Generated ratio (%)	70	30
Absorption length (cm)	26.7	55.0
Q.E. (%)	48	89
Detected ratio (%)	31.53	68.47

UV detection efficiency < 10 %

R&D on LY Enhanced Detection Unit LY Enhancement method with WLS

How to improve effective transmittance and Q.E. simultaneously?

Increase scintillation wavelength during propagation – Coating WLS on crystal

R&D on LY Enhanced Detection Unit Experiment Validation: NOL coated Tyvek Film

NOL Solution Preparation 0.4 g/ml Toluene solution

Film Spreading With Mayer-bar $200 \,\mu\text{m}$ wet film

Drying $40 \,\mu m$ film

R&D on LY Enhanced Detection Unit

Experiment Validation: NOL coated Tyvek Film

R&D on LY Enhanced Detection Unit Mass Production: NOL Coated Csl Crystal

R&D on LY Enhanced Detection Unit Mass Production: NOL Coated Csl Crystal

IOL Type	Painting Position	Dosage (g)	LY (pe/MeV)	Ratio
			117	
53	3	5	274	2.3
	3	10	303	2.6

Nominal scheme: 5 g NOL-53 per crystal
Average LY: 273 pe/MeV $\sigma_{noise} = 1.0 \text{ MeV} \rightarrow 0.4 \text{ MeV}$ $\sigma_E @ 100 \text{ MeV}$: 6.4 % → 4.5 %

EMC Timing Performance Study

Time Resolution Derivation

 $\Box \sigma_t \propto (\sigma_{\rm intr} \oplus \sigma_{\rm noi})$

Define noise sequence $\vec{n} = \vec{y} - A\vec{f}(\tau)$. Require $\chi_T^2 = 0$, according to error propagation formula:

$$\chi_T^2(A,\tau) = \sum \left(\vec{y} - A\vec{f}(0) - A\vec{f}'(0)\tau \right)^{\mathrm{T}} \mathrm{S}^{-1} \left(\vec{y} - A\vec{f}(0) - A\vec{f}'(0)\tau \right)$$
$$\sigma_{\mathrm{noi}} = \frac{2\vec{n}^{\mathrm{T}} S^{-1} \vec{f}'(0)}{A\vec{f}'^{\mathrm{T}}(0) S^{-1} \vec{f}'(0)}$$

 $\Box \sigma_{noi}$ influencing factors:

•(time correlated) electronics noise \vec{n} (proportional)

- Signal amplitude A (anti-proportional)
- Waveform slope *f* ' (anti-proportional)

EMC Timing Performance Study Electronics Scheme Upgrade

Numerical studies on timing & amplitude measurement performance

• Traditional electronics scheme: $CSA + (RC)^2$ shaping + ADC

New scheme: CSA + ADC + DSP (Template fit with least square method or optimal filtering)

$$\begin{pmatrix} \vec{f}(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{f}(0) & \vec{f}(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{f}'(0) \\ \vec{f}'(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{f}(0) & \vec{f}'(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{f}'(0) \end{pmatrix} \begin{pmatrix} A \\ A\tau \end{pmatrix} = \begin{pmatrix} \vec{f}(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{y} \\ \vec{f}'(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{y} \end{pmatrix}$$

Numerical Result	Time resolution (ps @ 200 fC)
CSA+(RC) ² +correlated noise	492
$CSA+(RC)^2$	213
CSA	133

Consistent amplitude SNR
 2 times improved time resolution
 "Compact" electronics design

EMC Timing Performance Study Other Intrinsic Factors

 $\Box \sigma_{intr}$: APD avalanche, shower growth, light propagation...

EMC Timing Performance Study

Time Resolution Measurement on Detection Unit

• σ_t : 5.0 ns \rightarrow 2.0 ns @ 0.033 GeV (measured) • $\sigma_t = 0.7$ ns @ 0.1 GeV (extrapolation)

Critical for Event timing & Neutral PID

500 600

Energy / MeV

400

200 300

100

ĩ

Studies on Pile-up Recovery Methods

Pile-up Induced Resolution Deterioration

Fast crystal & electronics – Isolate background out of ~500 ns

□Signal waveform still deformed by 1 MHz beam background events

M. Achasov, et al. Front. Phys. (Beijing) 19 (2024) 1, 14701

Studies on Pile-up Recovery Methods

Proof-of-Concept Algorithm

$$\Box \text{MultiFit: } \chi^2_{\text{MF}} = \left(\vec{y} - \vec{AT}\right)^{\text{T}} \left(\vec{y} - \vec{AT}\right)$$

• \vec{A} : Amplitude vector

• T: Template matrix, adjacent column with fixed time interval

•Utilize *fnnls* for minimization to avoid overfitting – noise level dependent threshold

M. Achasov, et al. Front. Phys. (Beijing) 19 (2024) 1, 14701

Studies on Pile-up Recovery Methods MultiFit with improved LY

 $\Box MultiFit threshold: 5 MeV \rightarrow 2.1 MeV$

Amplitude resolution further recovered

Studies on Pile-up Recovery Methods An Online Pile-up Recovery Scheme

DOptimal filtering: Least- χ^2 fit w/o iteration

$$\begin{pmatrix} \vec{f}(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{f}(0) & \vec{f}(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{f}'(0) \\ \vec{f}'(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{f}(0) & \vec{f}'(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{f}'(0) \end{pmatrix} \begin{pmatrix} A \\ A\tau \end{pmatrix} = \begin{pmatrix} \vec{f}(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{y} \\ \vec{f}'(0)^{\mathrm{T}} \mathbf{S}^{-1} \vec{y} \end{pmatrix}$$

Online application: point-by-point optimal filtering, pipeline processing

Summary

EMC technique scheme

•undoped CsI + APD + CSA-based Electronics

Dedicated technology R&D

R&D on LY enhanced detection unit

EMC timing performance study

Pile-up recovery Methods

Achieved performance indicators

1.3 times improved LY – 30 % energy resolution improvement of 100 MeV photon

• Time resolution: 1.9 ns@33 MeV \rightarrow 0.7 ns@100 MeV – critical for event timing & neutral PID

• Pile-up discrimination threshold: 5 MeV $\rightarrow 2.1 \text{ MeV} - \sigma_E$ recovered to < 2.5%@1 GeV

Fully meet experiment & physics requirements

Publications and Conference

	Authors	Title	Journal	Comments
1	M. Ablikim <i>et al</i> . (BESIII Collaboration)	Precision Measurement of the Decay $\Sigma^+ o p\gamma$ in the Process $J/\psi o \Sigma^+ \overline{\Sigma}^-$	Phys. Rev. Lett. 130, 211901 (2023)	Primary Author
2	Z. K. Jia et al.	A light yield enhancement method using wavelength shifter for the STCF EMC	Nucl. Instrum. Methods A 1050, 168173 (2023)	First Author
3	Z. K. Jia et al.	Study of the Properties of GSO:Ce for Applications in Dual-Bolometers	IEEE Trans. Nucl. Sci. 70, 1301–1306 (2023)	First Author
4	Y. Song, <mark>Z. K. Jia</mark> et al.	Pure CsI electromagnetic calorimeter design for the Super Tau-Charm Facility	Nucl. Instrum. Methods A 1057, 168749 (2023)	Second Author
5	L. F. Luo, <mark>Z. K. Jia</mark> et al.	Study on time measurement for CSA-based readout electronics in STCF ECAL	JINST 17, P02034 (2022)	Second Author
6	Z. K. Jia et al.	Measurement of the Decay $\Xi^0 o \Lambda \gamma$ decay with Entangled $\Xi^0 \overline{\Xi}{}^0$ pairs		SP's Approval

	Title	Conference	Туре
1	Design and Study of Electromagnetic Calorimeter for Super Tau-Charm Facility	TIPP 2021	Poster
2	Measurement of GSO:Ce Crystal's Scintillation Properties in Wide Temperature Range	16 th SCINT, 2022	Poster
3	Design and Prototype Test of the Homogeneous Crystal EMC for STCF	全国粒子物理大会,2022	Oral
4	The Progress of Super Tau Charm Facility in China	31 st Lepton Photon, 2023	Poster
5	R&D Progress of the STCF Electromagnetic Calorimeter	FTCF 2024	Oral

Acknowledgements

Many thanks to

●My supervisor: 彭海平 教授

Defense committee:沈肖雁研究员, 吕军光研究员, 房双世研究员,
 耿立升教授, 刘倩副教授, 黄光顺教授, 刘建北教授

Special thanks to

•张云龙教授,周小蓉教授

BACKUP

Introduction

Challenges facing the Standard Model

Introduction

Accelerator-based HEP Experiments

Varied CME for studies on different fundamental particles

DBEPCII/BESIII: The only experiment operated at τ -charm energy region

CPV in weak radiative decays

Reference	Channel	A _{CP}
Phys.Rev.D 49 (1994), 3771	$K^+ \to \pi^+ \pi^0 \gamma$	$2 \times 10^{-6} - 1 \times 10^{-5}$
Phys.Lett.B 315 (1993), 170	$K_L \to \pi^+ \pi^- \gamma$	$10^{-4} - 10^{-3}$
JHEP 08 (2017), 091	$D o ho \gamma$	$\leq 2 \times 10^{-3}$
Nucl.Phys.B 367 (1991), 575 Phys.Rev.Lett. 79 (1997), 185	$b ightarrow s\gamma$ $b ightarrow d\gamma$	(0.1 - 1)% (1 - 10)%
Eur.Phys.J.C 41 (2005), 173	$B \to \rho \gamma$	~10 %

PhysRevLett.70.2529, PhysRevLett.109.191801, PhysRevLett.118.051801, PhysRevLett.119.191802

Double Tag Analysis Cut Flow of DT

Main difference comes from single tag

Relative efficiency of DT selection consists

	$\Sigma^+ o p\gamma$		$ar{\Sigma}^- o ar{p} \gamma$	
cut	Absolute Efficiency (%)	Relative Efficiency (%)	Absolute Efficiency (%)	Relative Efficiency (%)
Single tag	39.02		44.31	
DT event selection	32.04	82.11	35.17	77.84
$\chi^2_{5C} < \chi^2_{4\gamma}$	31.46	98.19	34.50	98.14
χ^{2} <30	27.09	86.11	29.88	87.71
Decay length cut	21.18	78.18	23.22	77.72
Truth match	21.16	99.90	23.20	99.91

Measurement of the Decay $\Sigma^+ o p\gamma$

Decay Asymmetry Parameter Measurement

•	Processes	$\Sigma^+ \to p\gamma$	$\bar{\Sigma}^- ightarrow \bar{p} \gamma$
-	Individual fit	-0.587 ± 0.082	0.710 ± 0.076
	Simultaneous fit	-0.651 ±	± 0.056

-0.2

-0.5

 $\begin{array}{c} 0 \\ \cos \theta_{\Sigma^+} \end{array}$

0.5

 \mathbf{c}

-0.5

 $\cos\theta_{\Sigma^+}$

-0.2

$$\begin{split} M_1(\cos\theta_{\Sigma^+}) &= \frac{m}{N}\sum_{i=1}^{N_k}\cos\theta_{\bar{p}}^i\cos\theta_p^i \\ M_2(\cos\theta_{\Sigma^+}) &= \frac{m}{N}\sum_{i=1}^{N_k}\sin\theta_p^i\sin\phi_p^i \end{split}$$

0.5

Measurement of the Decay $\Xi^0 \to \Lambda \gamma$ ST Fit

IO Check result of ST yield

	$\overline{\Xi}{}^{0} ightarrow\overline{\Lambda}\pi^{0}$	$\Xi^{0} ightarrow \Lambda \pi^{0}$
Input yield	1 348 646	1 528 602
Output yield	1347 906 <u>+</u> 1754	1528861 ± 1765
Divergence ($\times \sigma$)	-0.42	0.71
Divergence (%)	0.05	0.08

Fit result of data and resultant $\mathcal{B}_{J/\psi \to \Xi^0 \overline{\Xi}^0}$

	$\overline{\Xi}{}^{f 0} o \overline{\Lambda} \pi^{f 0}$	$\Xi^{0} ightarrow \Lambda \pi^{0}$
Yield	1400541 ± 1989	1 611 216 <u>+</u> 2111
$\varepsilon_{ m ST}$	17.61 ± 0.01	19.77 ± 0.01
$\mathcal{B}_{J/\psi ightarrow \Xi^0}$ (× 10^{-3})	1.240 ± 0.002	1.271 ± 0.002
Correction Factor	0.982	1.006
$\mathcal{B}_{J/\psi ightarrow \Xi^0 \overline{\Xi}^0, \mathrm{corr}}$ (× 10^{-3})	1.263 ± 0.002	1.264 ± 0.002

Double Tag Analysis

DT Yield Extraction

	$\Xi^0 o \Lambda \gamma$		$\overline{\Xi}{}^0 o \overline{\Lambda} \gamma$	
Selection Criteria	Absolute Eff	Relative Eff	Absolute Eff	Relative Eff
ST selection (no truth match)	20.44%	20.44%	22.12%	22.12%
$N_p > 1$	19.24%	94.13%	20.40%	92.22%
$N_{\pi^-}>1$	13.61%	70.74%	14.52%	71.18%
$N_{\Lambda} \geq 1$	10.47%	76.93%	11.13%	76.65%
$N_{\mathrm{n.t.}} \ge 1$	10.06%	96.08%	10.68%	95.96%
5C Kinematic fit	6.94%	68.99%	7.48%	70.04%
Veto $L/\sigma_L <$ 2.0	5.75%	82.85%	6.18%	82.62%
$\left m_{\gamma \overline{\Lambda}} - m_{\overline{\Sigma}^0} ight > 12~{ m MeV}/c^2$	5.51%	95.83%	5.90%	95.47
$\chi^2_{5C} < 40$	4.44%	80.58%	4.77%	80.85%
Truth match	4.42%	99.54%	4.76%	99.79%

Processes	$\Xi^0 ightarrow \Lambda \gamma$	$ \bar{\Xi}^0 \rightarrow \bar{\Lambda} \gamma$
Signal	283 ± 19	301 ± 17
$\Xi^0 ightarrow \Lambda \pi^0$	50 ± 7	64 ± 8
Other BKG	38 ± 6	26 ± 5
Signal Purity (%)	76.3	77.0

Measurement of the Decay $\Xi^0 \rightarrow \Lambda \gamma$

Decay Asymmetry Parameter Measurement

Fit result of data

Processes	$\Xi^0 ightarrow \Lambda \gamma$	$ $ $\bar{\Xi}^0 \rightarrow \bar{\Lambda} \gamma$
Individual fit	-0.652 ± 0.092	0.830 ± 0.080
Simultaneous fit	-0.741 :	± 0.062

$$C_{11,\Lambda}(\theta_{\Xi^{0}}) = \frac{m}{N} \sum_{i=1}^{N} x_{1,i}^{\overline{\Lambda}} x_{1,i}^{\Lambda}$$

$$C_{02,\Lambda}(\theta_{\Xi^{0}}) = \frac{m}{N} \sum_{i=1}^{N} x_{0,i}^{\overline{\Lambda}} x_{2,i}^{\Lambda}$$

$$C_{33,p}(\theta_{\Xi^{0}}) = \frac{m}{N} \sum_{i=1}^{N} x_{3,i}^{\overline{p}} x_{3,i}^{p}$$

$$x_{3} = \cos\theta$$

$$\chi^2_{\rm PHSP} = 1.31$$
 $\chi^2_{\rm Signal} = 0.92$

-0.5

 $\cos\theta(\Xi^0)$

-1

 $\cos\theta(\Xi^0)$

Tracking efficiency correction and uncertainty

Based on previous work by BESIII software performance group

Study of tracking and PID efficiency and uncertainty from $J/\psi \rightarrow p\bar{p}\pi^+\pi^-$

Study of photon detection efficiency in $e^+e^- \rightarrow \gamma \mu^+ \mu^-$ process

Proton PID correction factor (C) and uncertainty (σ)

 $\cos \theta_{\gamma}$ Photon Efficiency correction factor (C-1)

Tracking efficiency correction and uncertainty

The Momentum-angular 2D distribution of $p(\bar{p})$ and photon is obtained from signal MC

The value of each bin called $w_{i,j}$. The average correction factor and unc¹ $C = \sum_{i,j} C_{i,j} w_{i,j}$ $\sigma^2 = \sum_{i,j} \sigma_{i,j}^2 w_{i,j}$

BF result is updated with average correction factor.

	Proton		Anti-proton		Photon
	Tracking	PID	Tracking	PID	Efficiency
<i>C</i> – 1	7.34×10^{-5}	1.41×10^{-3}	-1.05×10^{-4}	0.21×10^{-3}	-3.16×10^{-3}
σ (%)	0.11	0.32	0.10	0.41	0.26

Systematic Uncertainty

Control sample selection: $J/\Psi \rightarrow \Sigma^+ \overline{\Sigma}^-, \Sigma^+ \rightarrow p\pi^0, \overline{\Sigma}^- \rightarrow \overline{p}\pi^0$

- The same ST analysis as signal
- For DT:
 - 1 proton
 - 1 anti-proton
 - At least 4 γ

•6C kinematic fit, $\chi^2_{6C} < 100$

Yield extraction:

- **Signal shape**: truth matched signal MC events
- $J/\Psi \rightarrow \Delta^+\overline{\Delta}^-$ BKG shape: PHSP MC
- **Residual BKG**: 2rd order Chebychev polynomial
- **Fit method**: binned extended likelihood fit
- Fit range : $0.10 < P_p < 0.30 \ GeV/c$

Angular distribution fit

Exactly the same as signal

	$\Sigma^+ \to \pi^0 p$	$\bar{\Sigma}^- \to \pi^0 \bar{p}$
This work	-0.983 ± 0.003	1.000 ± 0.005
Previous work	$-0.998 \pm 0.037 \pm 0.009$	$0.990 \pm 0.037 \pm 0.011$

∙ MC Shape⊗Gaussian

Systematic uncertainties

 $\Box J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-, \Sigma^+ \rightarrow p\pi^0, \overline{\Sigma}^- \rightarrow \overline{p}\pi^0$ control sample related uncertainty terms:

• $\chi^2_{5c} < \chi^2_{4g}$: A very similar cut ($\chi^2_{4\gamma} < \chi^2_{5\gamma}$) is performed on control sample. Take cut efficiency difference between data and MC as uncertainty

	DIY MC	Data
Cut Efficiency (%)	98.85	98.65
Divergence (%)	0.2	

•Decay length cut: The same cut is applied to control sample. Also take cut efficiency difference as uncertainty

	DIY MC	Data
Cut Efficiency (%)	76.22	75.73
Divergence (%)	0.6	

C	1	Yield w/o χ^2_{5C} cut Yield with χ^2_{5C} cut Relative Efficiency (%)		
χ_{5C}^2 cut:	MC	536 405	455 393	84.90
	Data	439 189	369 730	84.17

Systematic uncertainties

Tracking and PID: 0.4% per track

Photon selection: 0.3% per photon

ST Yield: Change BKG shape from $J/\psi \to \Delta^+ \overline{\Delta}^-$ BKG shape + 3rd order Chebychev polynomial to only the polynomial.

Fit range: Change the fit range from

 \Box 0.15 < P_p < 0.30 *GeV/c* to 0.13 < P_p < 0.32 *GeV/c* and 0.17 < P_p < 0.28 *GeV/c*.

Range	BF(10 ⁻³)	Divergence (%)
$0.15 < \mathbf{P}_p < 0.30\mathrm{GeV}/c$	0.997	—
$0.13 < \mathbf{P}_p < 0.32 \mathrm{GeV}/c$	1.005	0.82
$0.17 < \mathbf{P}_p < 0.28 \mathrm{GeV}/c$	0.996	-0.07

Fit model:

- Signal and $\Sigma^+ o p\pi^0$ BKG shape: vary the parameters of convolved Gaussian by $\pm 1 \sigma$.
- **Polynomial BKG:** change the function from 2nd order to 3rd order.

Systematic uncertainties

Decay parameters:

• $\alpha_{\Sigma^+ \to p\pi^0}$, α_{ψ} and $\Delta \Phi$: generate new DIY sample with these values varied by $\pm 1 \sigma$. Compare the relative efficiency $\varepsilon_{DT}/\varepsilon_{ST}$.

	Relative Eff (%)	
	-1σ	+1σ
$lpha_{\Sigma^+ o p \pi^0}$	52.77	52.59
$\Delta \Phi$	52.63	52.49
$lpha_\psi$	52.56	52.62
Nominal set	52.62	

• $\alpha_{\Sigma^+ \to p\gamma}$: generate new DIY sample using $\alpha_{\Sigma^+ \to p\gamma}$ measured in this work and check the efficiency difference.

	Nominal	New
Efficiency (%)	21.16	21.16

Systematic Uncertainty Angular distribution fit

□ How to decide whether a cut is angular dependent:

So the first step is to clarify whether a cut is ξ dependent or ξ independent. For PHSP signal MC, the differential cross-section is a constant. So moments defined in Eq. 17 and Eq. 18 are also constants when not considering the efficiency. If a cut changes the distribution of these two moments, it's considered as a ξ dependent cut. Specifically speaking, a χ^2 induced by one cut is defined based on the definition of the moments $M_{1,2}$:

$$\chi_{ang}^{2} = \frac{1}{2m} \sum_{i=1}^{m} \frac{(M_{1}'(\theta_{i}) - M_{1}(\theta_{i}))^{2}}{\sigma_{1}^{2}(\theta_{i})} + \frac{(M_{2}'(\theta_{i}) - M_{2}(\theta_{i}))^{2}}{\sigma_{2}^{2}(\theta_{i})}$$
(19)

Systematic Uncertainty

Angular distribution fit

Likelihood value of BKG:

• Number of BKG: vary the number of event by $\pm 1 \sigma$

	α	
	-1σ	+1σ
$N_{\Sigma^+ o p \pi^0}$	0.651	0.651
$N_{Other \ BKG}$	0.652	0.649
Nominal set	0.651	

 Other BKG's likelihood value: change sampling region from

```
0.11 < {\rm P}_p < 0.16 \; {\rm GeV/c}, \, 0.24 < {\rm P}_p < 0.29 \; {\rm GeV/c}
```

to

```
0.10 < \mathbf{P}_p < 0.15 \; \textit{GeV/c}, \, 0.24 < \mathbf{P}_p < 0.29 \; \textit{GeV/c}
```

or

```
0.11 < {\bf P}_p < 0.16 \; {\it GeV/c}, \, 0.25 < {\bf P}_p < 0.30 \; {\it GeV/c}
```

	α
Region nominal	0.651
Region 1	0.651
Region 2	0.647

```
\alpha_{\Sigma^+ \to p\pi^0}, \alpha_{\psi} and \Delta \Phi uncertainty:
vary these values by \pm 1 \sigma
```

α		
-1σ	+1σ	
0.647	0.654	
0.651	0.651	
0.640	0.662	
0.651		
	-1σ 0.647 0.651 0.640 0.6	

Event selection efficiency:

• **Tracking efficiency**: Use corrected efficiency to sample the PHSP MC

$$r_{\varepsilon} = \frac{\varepsilon_p^{data} \times \varepsilon_{\bar{p}}^{data} \times \prod_{i=1}^3 \varepsilon_{\gamma,i}^{data}}{\varepsilon_p^{MC} \times \varepsilon_{\bar{p}}^{MC} \times \prod_{i=1}^3 \varepsilon_{\gamma,i}^{MC}}$$

The new set of PHSP MC is used to calculate the normalization factor and update the fit result

Event selection efficiency:

 Decay length cut: Perform the same angular distribution fit on control sample and check the result with or w/o decay length cut

	α	
	$\Sigma^+ \to p \pi^0$	$\bar{\Sigma}^- \to \bar{p}\pi^0$
w/o decay length cut	- <mark>0.988±</mark> 0.003	1.000-0.003
with decay length cut	- <mark>0.983±</mark> 0.003	1.000±0.005

- $\chi^2_{\gamma} < \chi^2_{\pi^0}$ cut: A customized cut on $\Sigma^+ \rightarrow p\pi^0$ control sample: $\chi^2_{\gamma} > \chi^2_{\pi^0}^*$ to check the difference on fit result
- Signal region cut: change signal region from $0.215 < \mathbf{P}_p < 0.235 \ GeV/c$ to $0.214 < \mathbf{P}_p < 0.234 \ GeV/c$ or $0.216 < \mathbf{P}_p < 0.236 \ GeV/c$

	α
Region nominal	0.651
Region 1	0.665
Region 2	0.643

*The relative efficiency of this cut is 89.25% for signal MC and 87.25% for control sample

Systematic Uncertainties

Efficiency Correction

Particles need correction

• π^{\pm} , $\Lambda(\overline{\Lambda})$, π^{0}

(BAM-537, BAM-676, BAM-559)

Efficiency Correction with control sample $\varepsilon_{MC(data)} = \frac{N_{detect}}{N_{detect} + N_{miss}}$ • Correction factor: $C = \frac{\varepsilon_{data}}{\varepsilon_{MC}}$ • Syst. Uncertainty after correction: $\sigma = \frac{\varepsilon_{data}}{\varepsilon_{MC}} \sqrt{\left(\frac{\sigma_{\varepsilon,MC}^2}{\varepsilon_{MC}^2} + \frac{\sigma_{\varepsilon,data}^2}{\varepsilon_{data}^2}\right)}$

Selected Control samples*:

 $\circ \pi^{\pm}: J/\psi \to \Xi^{-}(\to \Lambda \pi^{-})\overline{\Xi}^{+}(\to \overline{\Lambda}\pi^{+}), \Lambda \to p\pi^{-}, \overline{\Lambda} \to p\overline{\pi}^{+}$ $\circ \Lambda(\overline{\Lambda}): J/\psi \to \Xi^{-}(\to \Lambda \pi^{-})\overline{\Xi}^{+}(\to \overline{\Lambda}\pi^{+})$ $\circ \pi^{0}: J/\psi \to \Xi^{0}(\to \Lambda \pi^{0})\overline{\Xi}^{0}(\to \overline{\Lambda}\pi^{0})$

Systematic Uncertainties

Efficiency Correction

*: event selection procedure detailed in backup & memo

Systematic Uncertainties Efficiency Correction

Weighted

ST Correction Factor

	$\overline{\Xi}{}^0 ightarrow \overline{\Lambda} \pi^0$	$\Xi^0 o \Lambda \pi^0$
π^0	0.976	0.973
π^{\pm}	1.020	1.037
$\Lambda(\overline{\Lambda})$	0.989	0.993
Total	0.982	1.006

DT Correction Factor

	$\Xi^0 o \Lambda \gamma$	$\overline{\Xi}{}^0 ightarrow \overline{\Lambda} \gamma$
π^{\pm}	1.045	1.028
$\Lambda(\overline{\Lambda})$	0.987	0.986
Total	1.032	1.014

Particle detection uncertainty

- $p(\overline{p})$: Tong Chen's <u>report</u>
- Photon: BAM-511
- **Other objects**: This work

Weighted by signal distribution

	Source	$\Xi^0 o \Lambda \gamma$ (%)	$\overline{\Xi}{}^0 ightarrow \overline{\Lambda} \gamma$ (%)
Weighted by	Proton tracking & PID	0.47	0.52
distribution	Pion detection	2.3	1.4
	$\Lambda(\overline{\Lambda})$ detection	0.90	1.11
	Photon detection	0.40	0.40

Systematic Uncertainties BF Uncertainties

DThe control sample of $\Xi^0 o \Lambda \pi^0$ decay

- one more photon at DT side
- Event selection consistent with signal*
- Extract yield from p_{Λ}
- Efficiency difference between MC and data as syst. Uncertainty

- Decay length requirement, $\chi^2_{5C} < 40$:
 - Good signal-control sample consistency (BAM-559)
- $\circ m_{\gamma \overline{\Lambda}}$ requirement
 - $\,\,\circ\,\,$ Modified to $m_{\gamma_h\overline{\Lambda}}$ requirement
 - --Photon decayed from $\mathbf{DT}\,\pi^0$ with higher energy
 - Close efficiency between signal (95.83%) and control sample (94.74%)

	Decay length requirement	$m_{\gamma \overline{\Lambda}}$ requirement	$\chi^2_{5C} < 40$
MC (%)	77.49	94.74	80.61
Data (%)	78.53	94.59	81.03

Systematic Uncertainties BF Uncertainties

Decay parameters for MC Model

- BAM-537 & this work
- 100 sets of MC samples
- Randomly sampled decay parameters according to the uncertainty (with correlation)
- of pull distribution as uncertainty 0.65% in total

*: event selection procedure detailed in backup & memo

Systematic Uncertainties BE Uncertainties

ST Fit uncertainties

Bin	width	(number)	:

Bin number	Yield
60	1 396 983
80	1 394 820
100	1 400 541
120	1 401 884
140	1 399 875

Fit range:

• Shift the fit range by $\pm 20 \text{MeV}/c^2$

Fit range (GeV/ c^2)	[1.18,1.43]	[1.20,1.45]	[1.22,1.47]
Yield	1 406 703	1 400 541	1 407 123
Difference (%)	0.44		0.47

- Signal shape:
 - Sampling Gaussian parameters according to fit result (with correlation)
 - Repeat fitting by **500** times
 - \circ σ of pull distribution as uncertainty

Systematic Uncertainties BE Uncertainties

- Self BKG shape:
 - Convolve the same Gaussian as signal

	Yield
Before convolution	1 400 541
After convolution	1 403 034

- Continuum BKG shape:
 - Vary the order of polynomial

Polynomial order	Yield
2nd	1 421 223
3rd	1 400 541
4th	1 403 150

- Bump-like BKG
 - Removed from the fit one by one

Removed term	Yield	
	1 400 541	
$\overline{\Lambda} arsigma^0 \pi^0$ BKG	1 400 448	
$arsigma^{*0}\overline{arsigma}^{*0}$ BKG	1 406 727	

Systematic Uncertainties BF Uncertainties

DT Fit uncertainties

- MC shapes of $\Xi^0 \to \Lambda \gamma$ and $\Xi^0 \to \Lambda \pi^0$
 - Sampling Gaussian parameters
 - Repeat fitting by 200 times
 - $\bullet \sigma$ of pull distribution as uncertainty
- MC shapes of $\Xi^0 \rightarrow \Lambda \pi^0$ • Consistent with $\Xi^0 \rightarrow \Lambda \gamma$

Continuum BKG shape

• Vary the order of polynomial

Polynomial order	Yield
1st	313
2nd	312

- Fit range
 - Shift the fit range

Fit range	Yield
(0.09,0.22)	313
(0.07,0.20)	315
(0.11,0.24)	318

Systematic Uncertainties

a Uncertainties

Efficiency related uncertainties

- Particle detection efficiency
 - Utilizing efficiency correction results
 - Reweight MC sample
 - Update Normalization factor
 - **Negligible** influence (consistent with BAM-537)
- \circ Decay length requirement, $\chi^2_{5C} < 40,\, {\rm m}_{\gamma \overline{\Lambda}}$ requirement:
 - Angular distribution fit on $\Xi^0 \to \Lambda \pi^0$ control sample
 - Only set α_{Ξ^0} to be free

Original	Decay length requirement	$m_{\gamma \overline{\Lambda}}$ requirement	$\chi^2_{5C} < 40$
-0.380	-0.381	-0.382	-0.381

- Signal mass window:
 - Angular distribution fit on $\Xi^0 \rightarrow \Lambda \pi^0$ control sample
 - Loose mass window: 0. 110 < p_{Λ} < 0. 150 GeV/*c*
 - $^\circ\,$ Tight mass window: 0. $120 < p_\Lambda < 0.\,140\,{\rm GeV}/{\it c}$ (3 $\sigma\,$ mass window)
 - Only set α_{Ξ^0} to be free

Mass window	$lpha_{\Xi^0}$
$0.110 < p_{\Lambda} < 0.150 \ GeV/c$	-0.380
0. 120 $<$ p $_{\Lambda}$ $<$ 0. 140 GeV/ c	-0.378

Systematic Uncertainties

a Oncertainties

Fit related uncertainties

- Background Yield:
 - $\circ~$ Varied by $\pm 1\sigma$

BKG Yield		αγ
$\Xi^0 ightarrow \Lambda \pi^0$ BKG $+1\sigma$ -1 σ		-0.659
		-0.644
$\begin{array}{c} +1\sigma \\ -1\sigma \end{array}$		-0.657
		-0.646
Nominal		-0.652

- Continuum BKG model:
 - MC simulated distribution
 - $^\circ~$ Side band event (0. 075 $< p_\Lambda <$ 0. 100 GeV/c , 0. 204 $< p_\Lambda <$ 0. 216 GeV/c)

BKG Model	αγ
MC simulation	-0.652
Sideband	-0.639

- Fixed parameters' uncertainty:
 - Referred from BAM-537
 - Sampling within uncertainty (with correlation)
 - Repeat the fit by 300 times
 - \circ σ of pull distribution as uncertainty

Summary

□First measurement of $\Xi^0 \rightarrow \Lambda \gamma$ decay at BESIII

Competitive sensitivity compared to the world average value

Consistent BF and α_{γ} result with PDG

	${\cal B}_{\Xi^0 o \Lambda \gamma}$ ($ imes$ 10 $^{-3}$)	$lpha_{\gamma}$
$\Xi^0 o \Lambda \gamma$	$1.348 \pm 0.090 \pm 0.066$	$-0.652 \pm 0.092 \pm 0.016$
$\overline{\Xi}{}^0 ightarrow \overline{\Lambda} \gamma$	$1.326 \pm 0.098 \pm 0.069$	$0.830 \pm 0.080 \pm 0.044$
Combined	$1.347 \pm 0.066 \pm 0.062$	$-0.741 \pm 0.062 \pm 0.019$
PDG Value	1.17±0.07	-0.70 ± 0.07
Divergence ($\times \sigma$)	1.55	0.57

STCF Project

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032-2047
概念性设计 Conception design (CDR)															
关键技术攻关和 技术设计R&D (TDR)															
建造 Construction															
运行 Operation															

R&D Timeline

		2018	2019	2020	2021	2022	2023	2024
Conceptual Design								
Kev	Timing Performance							
Technology R&D	Pile-up Recovery							
	Light Yield Enhancement							
Prototype Fabrication								
Beam Test								

Homogenous Calorimeter Technical Routing

Technology	Experiment	Date	Depth	σ _E @ 1 GeV
Nal(Tl) + PMT	Crystal Ball	1983	20X ₀	2.7%
BGO + PD	L3	1993	22X ₀	2.1%
CsI + PMT	KTeV	1996	27X ₀	2.0%
CsI + SiPM	Mu2e	?	10X ₀	4.9%?
Csi(Tl) + PD	BaBar	1999	16-18X ₀	2.7%
CsI(TI) + PD	BELLE	1998	16X ₀	1.8%
Csi(Tl) + PD	BESIII	2010	15X ₀	2.5%
PWO + APD	CMS	1997	25X ₀	3.0%
PWO + APD	PANDA	?	22X ₀	2.5%

Common routing: CsI(TI) + PD
 Radiation hardness (<1 krad)
 Hit rate (< 1 kHz)

Time resolution requirements

ECAL Software Development

Simulation Framework

Conducted under Offline Software of Super Tau-Charm Facility

ECAL Software Development

Simulation Framework

Energy resolution from material budget

ECAL Conceptual Design

Position Resolution

Y. Song, Z. K. Jia et al. Nucl. Instrum. Methods A 1057, 168749 (2023)

$$X_c = \sum_j W_j(E_j) \cdot X_j / \sum_j W_j(E_j)$$

Least Chi-square and Optimal Filtering

Target function for least chi-square method:

$$\chi^{2} = \sum_{i,j} (y_{i} - \sum_{m} A_{m} f(T_{i} + \tau_{m}) - p) S_{ij}^{-1}$$
$$(y_{j} - \sum_{m} A_{m} f(T_{j} + \tau_{m}) - p)$$

One possible way for minimization:

Replace $A\tau$ with B, rewrite it as: $\begin{pmatrix} \mathbf{f}^{mT}\mathbf{S}^{-1}\mathbf{f}^{m} & \mathbf{f}^{mT}\mathbf{S}^{-1}\mathbf{f}'^{m} & \mathbf{f}^{mT}\mathbf{S}^{-1}\mathbf{1} \\ \mathbf{f}'^{mT}\mathbf{S}^{-1}\mathbf{f}^{m} & \mathbf{f}'^{mT}\mathbf{S}^{-1}\mathbf{f}'^{m} & \mathbf{f}'^{mT}\mathbf{S}^{-1}\mathbf{1} \\ \mathbf{1}^{T}\mathbf{S}^{-1}\mathbf{f}^{m} & \mathbf{1}^{T}\mathbf{S}^{-1}\mathbf{f}'^{m} & \mathbf{1}^{T}\mathbf{S}^{-1}\mathbf{1} \end{pmatrix} \begin{pmatrix} A \\ B \\ p \end{pmatrix} = \begin{pmatrix} \mathbf{f}^{mT}\mathbf{S}^{-1}\mathbf{y} \\ \mathbf{f}'^{mT}\mathbf{S}^{-1}\mathbf{y} \\ \mathbf{1}^{T}\mathbf{S}^{-1}\mathbf{y} \end{pmatrix}$

Only iterate one time: optimal filtering

Key Technology R&D Light Yield Enhancement

Proved the feasibility of L.Y. > 100 p.e./MeV

Further improvement for better performance?

Studies on Pile-up Recovery Methods An Online Pile-up Recovery Scheme

DOptimal filtering: Least- χ^2 fit w/o iteration

Prototype Fabrication and Beam Test

Prototype Fabrication (5x5 array)

- ✓ CsI crystal, APD and NOL are ready
- Frontend electronics, Signal processing module and DAQ system are ready
- NOL coated crystals under processing
- Mechanical system in design

Beam test scheduled in July, 2024

Prototype Fabrication and Beam Test

Amplitude Analysis on $J/\psi \rightarrow \gamma \pi^0 \eta$ Decay

Physics Motivation

- □Physics of $J/\psi \rightarrow \gamma + 1^-$ process
 - Isospin suppressed radiative process better sensitivity on exotic states (if exist)
 - A test field for light meson production mechanism (FSI, CUSP, VMD, ...)

Reference	$B(J/\psi ightarrow$ $\gamma a_0(980),a_0(980) ightarrow \pi^0\eta$)		
<u>Eur.Phys.J.A 56 (2020) 1, 23</u>	0.48×10 ⁻⁷		
PhysRevD.101.014005	2.7×10 ⁻⁷		

FIG. 5. $\pi^0 \eta$ production driven by ρ^0 conversion. (a) tree level, (b) rescattering. The intermediate states are $i = K^+ K^-$, $K^0 \bar{K}^0$, $\pi^0 \eta$.

Physics Motivation

□Physics of $J/\psi \rightarrow \pi^0(\eta) + 1^{+-}$ process

- Rare knowledge about axial-vector mesons production & radiative decay
- The first measurement on the BF of axial-vector meson-related decays

Decay Mode	BF Prediction PhysRevD.99.094020	BF from PDG	Decay Mode	Г Prediction (keV) <u>PhysRevD.77.034017</u>	Experiment BF
$J/\psi \to \eta h_1(1170)$	0.95×10^{-3}	Absent	$h_1(1170) \to \gamma \pi^0$	837 <u>±</u> 134	
$J/\psi \to \eta' h_1(1170)$	0.54×10^{-3}		$h_1(1415) \to \gamma \pi^0$	81 <u>+</u> 18	
$J/\psi \to \eta h_1(1415)$	0.04×10^{-3}		$b_1(1235) \to \gamma \pi^0$	180 <u>+</u> 28	Abcont
$J/\psi \to \eta' h_1(1415)$	2.35×10^{-3}		$h_1(1170) \to \gamma \eta$	3.1 <u>+</u> 0.9	Absent
$I/\psi \rightarrow \pi^0 b_1(1235)$	1.23×10^{-3}	$(2.3 \pm 0.6) \times 10^{-3}$	$h_1(1415) \to \gamma \eta$	438 <u>+</u> 80	
)/		$b_1(1235) \to \gamma \eta$	488 ±70		

Analysis Method

Partial wave analysis under the framework of covariant tensor amplitude

General formula: $A = \psi_{\mu}(m_1)e_{\nu}^*(m_2)A^{\mu\nu} = \psi_{\mu}(m_1)e_{\nu}^*(m_2)\sum \Lambda_i U_i^{\mu\nu}.$

 $U^{\mu\nu}_{\gamma a_0} = g^{\mu\nu} f^{(a_0)}$ $U^{\mu\nu}_{(\gamma a_2)1} = \tilde{t}^{(a_2)\mu\nu} f^{(a_2)}$ $U^{\mu\nu}_{(\gamma a_2)2} = g^{\mu\nu} p^{\alpha}_{(\psi)} p^{\beta}_{(\psi)} \tilde{t}^{(a_2)}_{\alpha\beta} B_2(Q_{(\psi)\gamma a_2}) f^{(a_2)}$ $U^{\mu\nu}_{(\gamma a_2)3} = q^{\mu} p^{\alpha}_{(\psi)} \tilde{t}^{(a_2)\nu}_{\alpha} B_2(Q_{(\psi)\gamma a_2}) f^{(a_2)}$ $U^{\mu\nu}_{\pi^{0}(\eta)X} = \varepsilon^{\mu}_{\alpha\beta\gamma} p^{\alpha}_{(\psi)} \tilde{T}^{(1)\beta} \varepsilon^{\gamma\delta\sigma\nu} p_{(X)\delta} \tilde{t}^{(1)(X)}_{\sigma} f^{(X)}$ $U^{\mu\nu}_{\pi^0(\eta)X,SS} = \tilde{g}^{(X)\mu\nu}f^{(X)}$ $U^{\mu\nu}_{\pi^{0}(\eta)X,SD} = \tilde{t}^{(2)(X)\mu\nu}f^{(X)}$ $U^{\mu\nu}_{\pi^0(\eta)X,DS} = \tilde{T}^{(2)(\psi)\mu}_{\lambda} \tilde{g}^{(X)\lambda\nu} f^{(X)}$ $U^{\mu\nu}_{\pi^0(\eta)X,DD} = \tilde{T}^{(2)(\psi)\mu}_{\lambda} \tilde{t}^{(2)(X)\lambda\nu} f^{(X)}$

Total Fit

m.,, / GeV c

Physics Motivation & Analysis Method

□Physics of $J/\psi \rightarrow \gamma + 1^-$ process

- Isospin suppressed radiative process better sensitivity on exotic states (if exist)
- A test field for light meson production mechanism (FSI, CUSP, VMD, ...)
- □Physics of $J/\psi \rightarrow \pi^0(\eta) + 1^{+-}$ process
 - Rare knowledge about axial-vector mesons production & radiative decay
 - The first measurement on the BF of axial-vector meson-related decays

FIG. 5. $\pi^0 \eta$ production driven by ρ^0 conversion. (a) tree level, (b) rescattering. The intermediate states are $i = K^+ K^-$, $K^0 \bar{K}^0$, $\pi^0 \eta$.

FIG. 5. $\pi^0 \eta$ production driven by ρ^0 conversion. (a) tree level, (b) rescattering. The intermediate states are $i = K^+ K^-$, $K^0 \bar{K}^0$, $\pi^0 \eta$.

