

Searches for Neutral Higgs Bosons at LHC

Yizhou Cai (Nanjing University)

22nd December 2024

Higgs Potential 2024, Hefei

Introduction

- The Higgs sector in the Standard Model is the simplest solution to achieve electroweak symmetry breaking
 - But no guarantee that the Higgs sector must be minimal
- BSM models can be constructed by extending the Higgs sector
 - With additional singlets/doublets/triplets/combinations of them/...
 - While keeping prediction compatible with the observed 125GeV boson
 - Help explain baryogenesis, hierarchy problem, ...
 - Bring new Higgs bosons after EWSB
 - 2HDM/MSSM: h, H, A, H^+, H^-
 - 2HDM+S/NMSSM: $h, H_1, H_2, A, a, H^+, H^-$
 - •
 - A broad search program is required
 - scaler/pseudoscalar, neutral/charged, light/heavy, narrow/broad...

Most ATLAS/CMS analyses using Run-2 dataset have been released

• Lots of interesting searches for neutral Higgs boson!

Neutral Higgs Searches at LHC

Resonance searches

- $X \to \gamma \gamma$
- $X \to \tau \tau$
- $A/H \to t\bar{t}$
- $A \to Zh$
- $X \to hh$

•

Exotic decays • $h \rightarrow aa$ • $h \rightarrow Za$ •

 $\begin{array}{l} \blacktriangleright & \textbf{Multi-BSM searches} \\ \bullet & X \to Yh \\ \bullet & A \to ZH \\ \bullet & \dots \end{array}$

- Complete review has been shown by Zirui Wang
- I will present selected two recent searches
 - $A/H \rightarrow t\bar{t}$ (ATLAS: <u>JHEP08(2024)013</u>, CMS: <u>CMS-PAS-HIG-22-013</u>)
 - Low mass $X \rightarrow \gamma \gamma$ (CMS: <u>arXiv:2405.18149</u>, ATLAS: <u>arXiv:2407.07546</u>)

$A/H \to t\bar{t}$

- Search for ggF produced A/H decaying to ttbar
 - 1-lepton and 2-leptons final states
 - Assume m_t 172.5GeV in CMS but 173.3GeV in ATLAS

Motivation

• Dominant decay channel across large regions of parameter space in type-II 2HDM (MSSM-like)

• Challenge:

- Large irreducible SM ttbar background
- Strong interference between signal and SM ttbar
 - Lead to peak-dip(peak) structure in $m_{t\bar{t}}$ spectrum

SM [a.u.]

BSM

$A/H \rightarrow t\bar{t}$: ATLAS 1L Strategy

- Two topologies
 - == 1 lepton
 - Resolved
 - ≥4 small-R jets, ≥1 b-tagged jet
 - Merged
 - ≥1 vRC jets, ≥1 b-tagged jet
- Reconstruct $t\bar{t}$ system by χ^2 algorithm
 - Fit on $m_{t\bar{t}}$
- Category resolved region by b-tag
 - == 1b, ≥ 2b
- Spilt resolved region by 5-bins $|\cos \theta^*|$
 - Sensitive to resonance decay

0.9

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

$A/H \rightarrow t\bar{t}$: ATLAS 2L Strategy

- One topology
 - ≥2 small-R jets, ≥1 b-tagged jet, == 2 OS leptons
- Reconstruct visible term in $t\overline{t}$ system
 - Fit on m_{llbb}
- Spilt into 5 bins by $\Delta \phi_{ll}$
 - Sensitive to spin state of the ttbar system
 - Also provide discrimination between A and H

$A/H \rightarrow t\bar{t}$: ATLAS Results

- Most constrained N
- Top ranked NP:

ttbar NNLO

- Strongest constraints in high mass, low $\tan\beta$ region in some interpretation including hMSSM
- Not significant deviation from SM observed in physical region of model-independent interpretation

$A/H \rightarrow t\bar{t}$: CMS 1L Strategy

- One topology
 - ≥3 small-R jets, ≥2 b-tagged jets, == 1 lepton
- Reconstruct $t\bar{t}$ system using <u>NeutrinoSolver</u> algorithm
 - Fit on $m_{t\bar{t}}$
- Categorized by number of jets
 - == 3j, ≥ 4j
- Categorized by lepton flavor
 - *e*, *µ*
- Also spilt by 5-bins $|\cos \theta^*|$
 - Non-uniform

e+, µ+ W⁺ iet b b jet 🗒 W d,s ū,c

$A/H \rightarrow t\bar{t}$: CMS 2L Strategy

- One topology
 - ≥2 small-R jets, ≥1 b-tagged jet, == 2 OS leptons
- Analytic reconstruction of $t\bar{t}$ system
 - Fit on fully reconstructed $m_{t\bar{t}}$
- Categorized by lepton flavor
 - *ее,е*µ,µµ
- Split into 9 bins by more sophisticated angular variables
 - c_{hel} : $l^+ \cdot l^-$, lepton directions in their helicity frames
 - c_{han} : $l^+ \cdot P_3 l^-$, same as c_{hel} but flip the sign of the component parallel to one top quark direction
 - Both sensitive to the spin and CP state of the ttbar system
 - Provide discrimination between A, H and SM ttbar

e⁺, μ⁺

W⁺

b

jet

W

$A/H \rightarrow t\bar{t}$: CMS Results

- Most constrained NP: top mass
- Top ranked NP: tH Yukawa
- > 5σ deviation from SM observed, most compatible with the A signal hypothesis at (365 GeV, 2%)
- Extract cross section using the top bound state η_t color-singlet model $\sigma = 7.1 \pm 0.8$ pb
 - Compatible with NRQCD prediction $\sigma(\eta_t) = 6.43 \text{ pb}$

$A/H \rightarrow t\bar{t}$: Results

- Similar expected limit between ATLAS and CMS
- CMS observe a pseudo-scalar/toponium excess while ATLAS doesn't
- More checks/re-interpretations/specialized-analysis are proceeding in ATLAS and CMS internally

Low Mass $X \rightarrow \gamma \gamma$

- Search for narrow width scalar signal on $m_{\gamma\gamma}$
- Motivation
 - Small excess observed by LEP Higgs search and CMS Run2 $X \rightarrow \tau \tau$ search

dominant

LEP

98 GeV

Expected for signal plus background

105

 $\mathbf{\zeta}$ mis-identified as γ

110 115 120

 $m_{\mu}(GeV/c^2)$

Expected for background

 2.3σ

Observed

Ę

10

- $\gamma\gamma$ channel provides a clean final-state topology
- Signal production modes involve ggH, VBF, VH, and ttH
- Main background
 - Continuum process: non-resonant γγ, γj, jj —
 - Resonant Drell-Yan: $Z \rightarrow ee$

138 fb⁻¹ (13 TeV)

Observed

95 GeV

High-mas

200 300

Expected

68% expected

95% expected

2.6 (2.3) σ

1000

2000

m, (GeV)

CMS

→ττ) (pb)

CL limit on σ(ggφ)B(φ

%**5**6

10-

10

Low Mass $X \rightarrow \gamma \gamma$ **: CMS Strategy**

- Assume the ratios between different production modes are the same as in SM
- Photon identified by a BDT
- Require $p_T^{\gamma 1(2)} > 30(18)$ GeV, $\frac{p_T^{\gamma 1(2)}}{m_{\gamma \gamma}} > 0.47(0.28)$ for ideally falling $m_{\gamma \gamma}$ spectrum
- Veto-*e* and cut on $\ln(\sum_{\text{tracks}} p_T^2)$ as function of $p_T^{\gamma\gamma}$ to suppress DY
- Two more BDTs for better discrimination power
 - Di-photon BDT trained between Higgs decayed $\gamma\gamma$ and continuum bkg
 - Combined BDT used to tag VBF events in 2017 and 2018
- Categorization
 - 3 classes for 2016
 - 3 untagged classes + 1 VBF-tagged class for 2017 and 2018

Low Mass $X \rightarrow \gamma \gamma$ **: CMS Strategy**

Signal modelling

- Combine all production modes together
- Described as sum of Gaussian functions depending on if candidate di-photon match correct primary vertex
- Fit to the shape of the signal in each event class

Background modelling

- Continuum background: Discrete profiling method
 - Treat the choice of function as a discrete parameter
- DY background:

Double-sided Crystal Ball function + exponential

Events / Ge/

Data - fit

Low Mass $X \rightarrow \gamma \gamma$ **: CMS Results**

• Largest excess with ~2.9 σ local (1.3 σ global) significance at $m_H = 95.4$ GeV

Low Mass $X \rightarrow \gamma \gamma$ **: ATLAS Strategy**

- Consider ggF only and take envelope of other production modes as uncertainty
 - Additionally consider model-dependent interpretation using CMS assumption

of events / 0.05

Fraction (

- e/γ ambiguity BDT to reject electron-fakes
- Require $\frac{E_T^{\gamma}}{m_{\gamma\gamma}} > 0.38$ for ideally falling $m_{\gamma\gamma}$ spectrum
- Categorized by conversion to further suppress DY impact
 - UU (both unconverted), CC (both converted), UC

- Train category BDT for model-dependent result
 - 9/3 categories for model-dependent/independent

Low Mass $X \rightarrow \gamma \gamma$: **ATLAS Strategy**

Signal modelling

- Combine all modes for model-dependent result
- Modelled as a DSCB function
- Fit to the shape of the signal in each category

Background modelling

- Continuum background: analytic function
 - Composition estimated by 2D side-bands method
 - Smooth MC prediction by Gaussian Process
 - Bias from function choice covered by spurious signal
- DY background: DSCB function

Low Mass $X \rightarrow \gamma \gamma$ **: ATLAS Results**

Summary

- Extensive efforts by ATLAS and CMS have not (yet) significantly hinted any extension in Higgs sector
 - Still many valuable contributions I couldn't cover in this talk
- Tighter experimental constraints on model parameters are derived
- Interesting excesses could be followed up
- Stay tuned for more searches in the future!

Thank you for your attention!

Backup

Ttbar Bound State

From theory calculation:

- Color-singlet
 - ${}^{1}S_{0}^{[1]}$
 - Peak below the ttbar threshold
- Color-octet
 - ${}^{1}S_{0}^{[8]} \text{ or } {}^{3}S_{1}^{[8]}$
- Expected to be small below the ttbar threshold

- The top Bohr radius $a_0 = \frac{2}{G_F \alpha_S m_t} \sim \frac{1}{20} \text{GeV}^{-1}$
- Lifetime of top $\sim \Gamma_t^{-1} = 1.5 \text{GeV}^{-1}$
- Possible gluon exchanges before the top decay
- Bound state -- toponium?
 - Probe of the QCD potential

$H \rightarrow aa \rightarrow bb\tau\tau(bb\mu\mu)$

- $h \rightarrow aa \rightarrow bb\tau\tau(bb\mu\mu)$ (CMS: <u>EPJC84(2024)493</u>, ATLAS: <u>PRD.110.052013</u>)
 - Decay of SM 125 GeV Higgs boson into 2 light pseudoscalars
 - One a decay into $b\overline{b}$, another a decay into $\tau^+\tau^-$ or $\mu^+\mu^-$

Motivation

- ~ 10% room in Higgs BR for exotics decay
- Light pseudoscalars appear in 2HDM+S/NMSSM/...
 - Coupling with SM Higgs by cubic term in the potential
 - Coupling with SM particles by mixing with $\phi_{1,2}$
- Relatively large BR with clean final states of *aa* decay
- Observe a bump in ATLAS $H \rightarrow aa \rightarrow bb\mu\mu$ search
 - Significance at 3.3 σ local (1.7 σ global) ·

$H \rightarrow aa \rightarrow bb\mu\mu$: CMS Strategy

- Dominant background
 - Drell-yan process and $t\overline{t}$
- Selection conditions
 - == 2 OS μ , \geq 2 b-tagged jets
 - Require $p_T^{\text{miss}} < 60 \text{GeV}$ to reduce $t\bar{t}$ + jets
 - χ^2 cut to further suppress background
 - Exploiting $m_{bb\mu\mu} \simeq 125 \text{GeV}, m_{bb} \simeq m_{\mu\mu}$
 - Taking correlation into account
- Categorized by jet p_T , b-tag score, VBF signature
- Fit on $m_{\mu\mu}$
 - Background completely estimated from data
 - Discrete profiling method
 - Signal modelled as weighted sum of a Voigt profile and a Crystal Ball function

$H \rightarrow aa \rightarrow bb\tau\tau$: CMS Strategy

- Dominant background
 - $t\bar{t}$, Drell-yan τ 's + jets, jet fakes processes
- Selection conditions
 - ≥ 1 b-tagged jet
 - Exact one OS $e\mu$ or $e\tau_{had}$ or $\mu\tau_{had}$ pair
- Categorized by b-tag and τ decay mode
- Train pNN in each category for discrimination
 - Used as a reference to define sub-regions
- Fit on $m_{ au au}$
 - Reconstructed via SVfit algorithm

$H \rightarrow aa \rightarrow bb\tau\tau$: ATLAS Strategy

- The same dominant background
- Dedicated merged B-tagger for low m_a
 - Based on DeXTer deep sets
- Selection conditions
 - ≥ 1 b-tagged jet or B-tagged RC jet
 - Exact one OS $e\mu$ or $e\tau_{had}$ or $\mu\tau_{had}$ pair
- Categorized by b/B-tag and τ decay mode
- Reconstruct neutrinos 4-momenta by MMC
- Train pNN as final discriminant in fit
 - Possibility to treat m_a hypothesis as input
- Only events satisfying $m_{ au au}^{
 m MMC}$ cut used to fit
 - To reduce the correlation among different hypothesis

りました。 日本1.5

$H \rightarrow aa \rightarrow bb\tau\tau(bb\mu\mu)$: Results

- No excess found over SM prediction
- Boosted B-tagger help ATLAS improve the limit at low mass a lot