Quantum entanglement and BSM with top in the final state
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Introduction

® The Standard Model (SM) is a Quantum Field Theory — fundamental properties of
Quantum Mechanics can be tested using SM processes

® This gives the opportunity to study concepts of Quantum Information at High Energy
colliders like LHC
® Top quark pair production offers a very suitable case study for this, thanks to the top
quark properties, the high production cross section and very clean reconstructed final
state

® However, SM in also incomplete since it cannot explain for example Baryon
Asymmetry in the Universe, Dark Energy and Dark Matter ...

® Also in this case, studies considering final states with Top quark can lead to physics
Beyond Standard Model (BSM portal)
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2 Qubit (particle) Quantum state

® At LHC, no control over colliding particles initial state — in this case, a system can
be described using a spin density matrix p =Y. p; - [¢j >< 1]

® Qubit: quantum system with two states, like a spin-1/2 particle

e Considering a 2 qubit (particle) system, the most general spin density matrix can be
written as:

B Ii+ ), (B;_Ui ® I + B, I ®0i) + Zz’,j Cijo* ® o7
a 4

p

® 15 parameters included in B,-jE and Cjj;, corresponding to the spin polarisation of the
individual particles B* (3+3 param.) and the spin correlation matrix C (9 param.)
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Top quark pair production

® Top quark (t) is the heaviest particle in
the SM with a lifetime of ~ 10725 s

e Hadronisation in ~ 10~23 s and
Spin-decorrelation in ~ 1072! s

® The spin information is propagated in
the top decay products

® Spin-correlations between a pair of

top-quarks can be measured for example
looking at the angles between the decay

products in the tt rest frame
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® Experimentally, spin polarisation and spin correlation measurement through angular

differential cross section:

1 do
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Quantum Entanglement (QE)

e Quantum state of a particle cannot be described independently from another particle
(non-separable state or entangled state)
® Measurement performed on one system will influence the other system entangled with it
Alice Bob

measurement ‘

® Peres-Horodecki criterion for quantum entanglement: Tr[C] < -1
® From spin measurement through tt differential cross section measurement:
1 do 1
———— ==(1—- Dcos
o d cos(¢) 2( (4))
® These can be related, allowing quantum entanglement measurement at LHC:

Tr[C] 1
D<_=
3 V<73
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Entanglement Measurement

® Measuring spin-correlation is NOT equivalent to entanglement measurement, since

spin-correlation can also be a classical property of a system

® We need to also know a phase-space where to perform the measurement

® Four maximally entangled states for:

|F) = (m> £ 1)),

S\

o) = (m> +[I1)).

%\

® low m: pseudo-scalar state (W™). In
this case D is a good observable

® high m.: triplet vector-state
(T £ &, W), In this case there is a
sign-flip in the spin correlation matrix:
D is not anymore a good observable
— introduce D to correct to sign-flip
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https://arxiv.org/abs/2003.02280

QE measurement in ATLAS

e Using di-leptonic tt decay final state
selecting events using a single lepton
trigger
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2021-24/

QE measurement in ATLAS

® Particle level D measured using a calibration curve built from alternative sets of
reconstructed D and particle level D

® Results show no clear preference for a specific MC prediction

® Entanglements is measured with a significance of more than 5 o, with obs. (exp.)
D = -0.547 £ 0.002 (stat) £ 0.021 (syst) (-0.470 & 0.002 (stat) £ 0.018 (syst))
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2021-24/

QE measurement in CMS

e CMS performed a similar measurement as ATLAS in the tt di-leptonic final state

® Entanglements is measured with an observed (expected) significance of 5.1 (4.7) o

® Results available with/without including toponium ()
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https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP-23-001/index.html

QE measurement in CMS
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® Performed measurement of the Spin-Density Matrix coefficients

® Top polarisation coefficients ~ zero while 4-spin correlations coefficients are non-zero

e All results in agreement with SM expectation
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https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-23-007/index.html

QE measurement in CMS
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® For D measurement, entanglement ® For D measurement, entanglement
observed at low m,; values near to the observed at high m,; values while no
production threshold entanglement near production threshold
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https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-23-007/index.html

Top quark pair as portal for BSM physics

¢ Several BSM models (2HDMs, hMSSM, ALPs, etc) predict new heavy scalar and
pseudoscalar particles decaying in tt

® Signature: peak-dip or peak-peak structure in m, spectrum
® Main challenge for this type of measurement is the strong interference between signal
and SM tt background
® Non-trivial to model and treat statistically
® |nterference patterns dependency on signal parameters
® Low-my; peak expected event for resonance at high masses
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CMS search for heavy (pseudo)-scalars

® Reported a > 5 o deviation between data and prediction in the m;z < 400 GeV

region

e Consistent with the toponium quasi-bound tt state. Predicted by a simplified model on
non-relativistic QCD with a cross section of 7.1 pb and an uncertainty of 11% . This
yields to the best statistical compatibility with data.

® (Consistent also with a narrow pseudoscalar state with my = 365 GeV
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https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-22-013/index.html

ATLAS search for heacy (pseudo)-scalars

® ATLAS has also performed a similar search for heavy (pseudo)-scalars decaying in tt

® No excesses near the m;z production threshold region

® No exclusion regions calculated for masses < 400 GeV:

® | O signal model considered bad approximation of actual interference pattern
® |arge k-factor corrections

i Observed 95% CL exclusion
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https://link.springer.com/article/10.1007/JHEP08(2024)013

CMS vs ATLAS comparison

® There are several differences between ATLAS and CMS - DDifferent approach to
higher order prediction of SM tt process, different strategies, differences in
systematic uncertainties

® Focus comparison on 1L Resolved 2b regions as these are the most comparable

CMS preliminary 1, = 4 138 fb~1, Run 2 (13 TeV)
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CMS vs ATLAS comparison

Events / 50 GeV

Ratio to Bkg.

® There are several differences between ATLAS and CMS - DDifferent approach to
higher order prediction of SM tt process, different strategies, differences in

systematic uncertainties

Focus comparison on 1L Resolved 2b regions as these are the most comparable
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® Same kinematic range between the two experiments

® Similar pre-fit modelling
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CMS vs ATLAS comparison

Events / 50 GeV

Ratio to Bkg.

There are several differences between ATLAS and CMS - DDifferent approach to
higher order prediction of SM tt process, different strategies, differences in

systematic uncertainties

Focus comparison on 1L Resolved 2b regions as these are the most comparable
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e Differences mostly in the statistical treatment ... still under
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Summary

® Top quark offers a great opportunity to study Quantum Information at High Energy
colliders like LHC and also Beyond Standard Model physics

® Quantum Entanglement measured both by ATLAS and CMS experiments with a
significance greater than 50

® open the possibility to explore similar measurements also for bosons

® CMS reported a more than 5 o deviation between data and prediction in the m;z <
400 GeV region. Compatible with toponium final state, but not observed by ATLAS

® ongoing cross-talk between the two experiments to carefully compare the measurements
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