

Recent Higgs to Dark Photon search combination and Dark Higgs search results from ATLAS

Qibin LIU on behalf on the ATLAS Collaboration

UNIVERSITY of WASHINGTON

Higgs potential 2024 (Hefei)

The Dark Matter

MACS J0152.5-2852

- Existence of dark matter (DM) supported by many pieces of evidence
 - Galaxy rotation, gravity lensing, bullet cluster, cosmic microwave background, contradictions in MOND, so on
- DM makes up most of our universe its nature remains largely unknown
- In quest to search for any possible interaction of DM beyond gravity
 - Major effort in nowadays study for new physics

LHCb

CMS

LHC

SPS ATLAS

ALICE

Pb

Dark Matter Searches at ATLAS

ATLAS Detector

General-purpose detector Designed for p-p collision at LHC Inner Detector, calorimeters and Muon spectrometer

Detection of Dark Matter

 DM invisible from detector: E_T^{miss}
 → Detect from recoil of visible particles
 → Detect from resonance or unusual signature If nothing detected: exclusion limit is set

Combination of searches for Higgs boson decays into a photon and a massless dark photon using pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

JHEP 08 (2024) 153

Dark Photon

- U(1) extension to SM and focus on kinetic mixing of dark gauge boson (dark photon) with SM
 - Allowing massless gauge boson and other mass mechanism besides Higgs mechanism

$$L = L_{\rm sm} + \varepsilon F^{\mu\nu} F'_{\mu\nu} + \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} + m_{A'}^2 A'^{\mu} A'_{\mu}$$

• Widely studied by direct detection and fixed target experiments

[2005.01515]

• Collider experiments provide unique channel to search for dark photon: through Higgs coupling

Dark Photon Searches at ATLAS

• 3 latest ATLAS searches for massless dark photon with Higgs coupling

	Main Production Mode	Ref.
ZH Analysis	ZH	JHEP 07 (2023) 133
VBF Analysis	VBF	<u>Eur. Phys. J. C 82 (2022) 105</u>
Mono-γ Recast	ggF	ATL-PHYS-PUB-2023-003

Dark Photon Signature in ZH Analysis

Topo: 1 photon (25GeV), 2 lep (Z mass window), <=2 jets, MET (60GeV)
Main background from leptonically VVγ and fake MET
Fake MET estimated by data-driven; syst in leading rank
BDT enhance S/B combining MET significance, mT, m_II, pTgam, so on
VVγ estimated with MC and controlled using dedicated CR
Good sensitivity for SM H to dark photon while still statistical limited
Observed(expected) 95% CL limit: BR(H→γγd)=2.3%(2.8%)

Dark Photon Signature in Mono-photon Recast

Topology: >=1 photon, no lepton, <=1 jet (30GeV), MET (200GeV) Photon trigger at relatively high ET (g140) Main background from Z(vv)γ, W(II)γ, γ+jets and e/j fake photon Real photon: Z(vv)γ dominated. Esti. from MC and control w/ CR Fake photon from data-driven and related syst leading rank Good sensitivity in BSM heavy Higgs to dark photon up to mH 3TeV

8

Mono- γ (γ+MET) recast

Dark Photon Signature in VBF channel

Topo: **1 photon**, **no lepton**, >=**2 jet**, MET(trig) Main bkg from Wγ, Zγ and fake photon Strong/EW-induced Vγ controlled with CRs Fake photon related uncertainty dominates Good sensitivity in both SM and BSM Higgs

Eur. Phys. J. C 82 (2022) 105

Dark Photon Combination

- Orthogonal analysis channels allows maximize the sensitivity though stat. combination
- Negligible little overlap due to different definition of object (e.g. EMTopo/Pflow jet, JVT, ...)

Latest ATLAS constraint on Dark Photon

Current best constraint!

Latest ATLAS constraint on Dark Photon

Previously Probed

Search for dark matter produced in association with a dark Higgs boson in the bb final state using collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

ATLAS-CONF-2024-004

<u>2407.10549</u>

Higgs Mechanism in Dark Sector

- Explain the mass of DM with Higgs mechanism in dark sector: spontaneously broken U(1)' gauge symmetry
- Majorana DM χ interacts with SM via spin-1 mediator Z' and a singlet s under U(1)'
- Mixing of dark Higgs **s** and SM Higgs **h** : detectable decay as $s \to b\bar{b}$, $s \to VV$ depending on mass
- New annihilation channel to SM open up ($\chi \chi \to ss \to SM$): prevent **DM Relic Density (\Omega h^2)** over-production
- 4 parameters of interest and new scan method with Ωh^2 fix at 0.12 (assuming all DM from this mechanism) [2]
 - First time directly require Ωh^2 condition in collider DM search

Overview of Mono-S(bb) Analysis

- Search for dark Higgs boson with $b\overline{b} + E_T^{miss}$ signature
- Probe E_T^{miss} down to 200 GeV and m_{bb} down to 30 GeV
- Resolved/boosted topology reconstructed depending on MET

Overview of Mono-S(bb) Analysis

Z'

16

_Fmiss

- Search for dark Higgs boson with $b\overline{b} + E_T^{miss}$ signature
- Probe E_T^{miss} down to 200 GeV and m_{bb} down to 30 GeV
- Resolved/boosted topology reconstructed depending on MET
- Background from W+jets, ttbar (τ not vetoed) and Z+jets ($Z\nu\nu + b\overline{b}$)
 - Different composition in MET regions
 - Estimated from MC and normalization fitted to data in 1-muon and 2-lepton control region

Analysis Selections

Cut	Resolved	Merged	
Trigger	0/1-lepton: lowe	est unprescaled $E_{\rm T}^{\rm miss}$ triggers	
mgger	2-lepton: lowest un	prescaled single-lepton triggers	Lepton trigger used in CR
	0-lepton: veto c	on baseline electrons, muons	
Lepton multiplicity	1-lepton:	exactly one signal μ	
	2-lepton: 2 baseline e or μ , e	exactly 2 signal e or μ with opposite sign	
Z mass window	2-lepton only	y: $ m_Z - m_{\ell\ell} < 10 \text{ GeV}$	
au vetoes	veto on baseline	τ leptons & extended τ -veto	N
$\min_{j \in \{1,2,3\}} \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, j)$		> 20°	QCD veto
Jet multiplicity	$2 \le N_{\text{small}-R \text{ jets}}^{\text{central}} \le 4$	$N_{\text{large-R jcts}}^{\text{central}} \ge 1$	
b-tag multiplicity	$N_{\text{small}-R \text{ jets}}^{b-\text{tagged}} = 2$	leading large-R jet D_{Xbb} -tagged (m_J >50GeV	B taccina stratacy
<i>b</i> -tag multiplicity	J. The second	$N_{\text{asso.VRTrk.jets}}^{b-\text{tagged}} = 2 (m_J < 50 \text{GeV})$	b-ragging strategy
Non-associated <i>b</i> -jet veto	-	$N_{\rm non-asso.VRTrk.jets}^{b-tagged} = 0$	Top veto
	0-lepton: $S > 12$		
$E_{\rm T}^{\rm miss}$ significance	1-lepton: $S_{lep.invis.} > 12$	—	
	2-lepton: $S_{\text{lep.invis.}} > 12 \& S < 5$		
Top mass provu	$m_{\rm T}^{b,{\rm min}} > 170 { m GeV}$		
top-mass proxy	$m_{\rm T}^{b,\rm max} > 200 { m GeV}$	—	
$E_{\rm T}^{\rm miss}$ and $S(b\bar{b})$ recoil	$0.7 < E_{\rm T}^{\rm miss}/p_{\rm T}(jj) < 1.3$	$0.7 < E_{\rm T}^{\rm miss}/p_{\rm T}(J) < 1.3$	Optimized for back-back topo.
Boosted decay	-	$2m_J/p_{\rm T}(J) < 0.6$	Signal topology with varving mass
$E_{\mathrm{T}}^{\mathrm{miss}}$	$150 < E_{\rm T}^{\rm miss} < 500 { m GeV}$	$E_{\rm T}^{\rm miss}$ > 500 GeV	

Novel Analysis Techniques in Merged Region

- Reclustering(RC) jet extends the search range for scalar mass down to 20GeV
 - Jet reconstruction at low mass is challenging standard large-R jet is NOT supported for mJ below 50GeV
 - Jet mass well-defined: calculated from calibrated input jets and systematic uncertainty propagated
- Combining Large-R jet kinematics and sub-jet information with machine learning: DXbb tagger
 - High efficiency discriminating Hbb v.s. Top/QCD and mass-agnostic design applicable in a wide mass range
 - Calibrated using Zbb (signal jet efficiency) and semi-leptonic ttbar (background jet efficiency)

ATLAS Boosted Xbb jet tagging (DXbb)

DXbb v.s. 2 single-b jets tagging

ATL-PHYS-PUB-2020-019

R MV2

1.0

Results & Latest Collider Constrain on Dark Higgs

No significant derivation from SM

Impact of Systematic Uncertainty

Source of uncertainty	Fraction of total uncertainty [%				
Source of uncertainty	(a)	(b)	(c)		
Signal modeling	0	1	0		
Z+jets normalization	41	11	11		
W+jets normalization	8	13	13		
$t\bar{t}$ normalization	1	7	8		
Z+jets theory	16	24	25		
W+jets theory	8	12	9		
$t\bar{t}$ theory	3	8	11		
Other background theory	10	16	22		
MC statistics	15	17	18		
Flavor tagging	18	47	37		
Jet energy	3	7	11		
Other experimental	2	4	3		
Total systematic uncertainty	57	66	63		
Data statistical uncertainty	82	75	77		
Total uncertainty	100	100	100		

Latest Collider Constrain on Dark Higgs

<u>Relic density compatible setup ($\Omega h^2 = 0.12$)</u>

Scenario2 (m_{χ} = 900GeV) Excluded $m_{Z'}$ up to 4.1 TeV Scenario3 (m_S = 70GeV) Excluded $m_{Z'}$ up to perturbative limit

Summary

- Recent combination of dark Photon and search for dark Higgs at ATLAS reported
- Combination of dark Photon searches with VBF+MET, ZH and mono-photon signatures
 - Best collider constraint from LHC on SM Higgs decay to photon and dark photon
 - Strongest exclusion of BSM Higgs coupled to dark photon: mass up to 1.5TeV
- Search for Dark Higgs in bb+MET final states using full Run2 data
 - Coherent relic density with cosmology and complete the scan of scalar mass in 30-400GeV
 - Enabled by novel ML-based mass-agnostic Xbb tagging and low mass boosted jet
- Still a lot to fully understand the DM but progressing + promising!

<u>ළ</u>14 2011 pp 🛛 s = 7 TeV s = 8 TeV .<u>}</u>120 s = 13 Te\ s = 13 Te Lumir s = 13 TeV s = 13.6 Te\ 2023 pp (s = 13.6 TeV s = 13.6 Te\ Delivered 80 60 20 JUl Apr Oct Jan Month in Year

Stay Tuned!

More the luminosity, Less the dark!

ATLAS Luminosity

DM Interaction

DM Theory

Boosted Xbb tagger in ATLAS

DXbb tagger [ATL-PHYS-PUB-2020-019] Deep Neural Network based Xbb tagging Hbb(mass-agnostic) v.s. QCD v.s. Top

Updated! GN2X tagger [<u>ATL-PHYS-PUB-2023-021</u>] Transformer based Xbb tagging (New analyses coming soon!)

Dark Higgs

Relic-coherent 3-D Parameter Space

How <u>relic density</u> used to reduce parameter space of DM model

Reco Analysis Result

Set the final exclusion limit

27

Run: 283780 Event: 694330347 2015-10-28 05:33:39 CEST

Mono-S(bb) Analysis: Post-fit

Summary of Selection of Dark Photon Search

Channels	VBF	ZH	ggF
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Lepton(s)	Photon
Photons	$=1,C_{\gamma}>0.4$	= 1	≥ 1
E_{T}^{γ} [GeV]	$\in (15, \max(110, 0.733 \times m_{\mathrm{T}}))$	> 25	> 150
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	> 60	> 200
Jets	2 or 3, $m_{j_1 j_2} > 250 \text{GeV}, \Delta \eta_{j_1 j_2} > 3$	≤ 2	≤ 1
	$\eta_{j_1}\cdot\eta_{j_2}<0,\Delta\phi_{j_1j_2}<2,C_{j_3}<0.7$		
Leptons	$= 0 \ (e, \ \mu)$	= 2, SFOC	$=0~(e,\mu,\tau)$
		$m_{\ell\ell} \in (76, 116)~{\rm GeV}$	
Disc. variables	m_{jj} and $m_{\rm T}$ in SR and 4 CRs	BDT score and 1 CR	$E_{\mathrm{T}}^{\mathrm{miss}}$
Reference	[34]	[35]	[36]
Processes considered in the combination	VBF, ggF	ZH	ggF, VBF
Combination scenario	SM, BSM	\mathbf{SM}	BSM

Minimal Model for Dark Photon

Statistical Combination

$$L(\mu, \vec{\theta}, \vec{\gamma}) = \prod_{i \in bins} \operatorname{Pois} \left(N_i \mid \mu s_i(\vec{\theta}) + \gamma_i b_i(\vec{\theta}) \right) \times \prod_{\theta \in \vec{\theta}} \frac{1}{\sqrt{2\pi}} e^{-\theta^2/2} \times \prod_{i \in bins} Gauss\left(\beta_i \mid \gamma_i \beta_i, \sqrt{\gamma_i \beta_i} \right)$$
Input Analyses
Fitting model
$$\mu, \vec{\theta}, \vec{\gamma}$$
Combined Fit Model
Combined data
MCl
$$K_{eco. \& Sel.}$$
Combined data and MCl
$$N_i, s_i(\vec{\theta}), b_i(\vec{\theta}), \beta_i$$
Technical improvement: CI/CD based automatic workflow

Recast method for analysis preservation/reuse

	VBF	ZH	ggH(monophoton
LUMI	•	•	•
PRW	•	•	•
JES	•	0	O
JER	0	0	0
JVT		\bullet	lacksquare
EG Resolution and scale		\bullet	igodot
EL ISO/RECO efficiency	•	•	•
EL ID efficiency	•	•	•
MET		\bullet	lacksquare
MUON ISO/RECO efficiency	•	•	•
MUON ID/MS/SAGITTA/SCALE	•	•	•
Flavor tagging	•	•	•
MC Stat	0	0	0

Systematic uncertainty correlation carefully handled: Correlate only when from same source and recipe and no obvious pull/constraint in different phase spaces

Dark Photon Signature with SM Higgs Coupling

JHEP 07 (2023) 133

Eur. Phys. J. C 82 (2022) 105

Combine 6 obs. MET significance, mT, ...

Dark Photon Signature with BSM Higgs Coupling

ATL-PHYS-PUB-2023-003

Eur. Phys. J. C 82 (2022) 105

Mono- γ (γ+MET) recast

VBF channel

Dark Photon Combination: Uncertainty

SM Higgs

BSM Higgs

Uncertainty source	$\Delta \mathcal{B}_{\text{group}} / \Delta \mathcal{B}_{\text{total}} [\%]$
Theory uncertainties	49
Signal modelling	2.2
Background modelling	47
Experimental uncertainties	63
Luminosity, pile-up	< 0.1
Jets, $E_{\rm T}^{\rm miss}$	40
Electrons, muons	11
Fake background	35
MC statistical uncertainty	36
Systematic uncertainties	75
Statistical uncertainty	66
Total uncertainty	100

Uncertainty source	$\Delta \mathcal{B}_{\text{group}} / \Delta \mathcal{B}_{\text{total}}$ [%]					
m_H [GeV]	400	800	1000	2000	3000	
Theory uncertainties	30	27	28	40	35	
Signal modelling	2.2	4.6	5.2	6.9	2.0	
Background modelling	30	27	27	38	34	
Experimental uncertainties	64	51	45	37	41	
Luminosity, pile-up	4.6	2.6	2.9	2.8	2.3	
Jets, $E_{\rm T}^{\rm miss}$	22	12	11	13	14	
Electrons, muons	20	23	18	13	14	
Fake background	52	41	35	25	29	
MC statistical uncertainty	20	17	19	19	23	
Statistical uncertainty	75	84	87	85	86	
Systematic uncertainties	67	55	49	53	52	
Total uncertainty	100	100	100	100	100	

Dark Photon Combination: Acceptance

BSM Higgs

	$200 \le E_{\mathrm{T}}^{\mathrm{miss}}$	⁸ < 250 GeV	$250 \le E_{\mathrm{T}}^{\mathrm{miss}}$	⁸ < 300 GeV	$350 \le E_{\rm T}^{\rm mis}$	^s < 375 GeV	$E_{\rm T}^{\rm miss} \ge$	375 GeV
m_H [GeV]	ggF [%]	VBF [%]	ggF [%]	VBF [%]	ggF [%]	VBF [%]	ggF [%]	VBF [%]
400	8.15	4.30	0.35	0.49	0.04	0.05	<0.01	< 0.01
600	9.05	4.95	18.9	9.10	7.74	5.44	0.35	0.53
800	3.21	1.96	5.33	3.27	15.4	9.39	15.6	10.5
1000	1.63	1.24	2.50	1.72	5.92	4.01	29.4	21.2
1500	0.50	0.38	0.73	0.69	1.65	1.33	33.3	30.0
2000	0.22	0.21	0.35	0.33	0.67	0.69	32.7	34.3
2500	0.10	0.09	0.16	0.18	0.35	0.41	29.6	38.0
3000	0.04	0.08	0.08	0.11	0.19	0.29	28.9	39.6