

BSM resonance to ttbar search at ATLAS and CMS

Jialin Li

Shanghai Jiao Tong University for the ATLAS and CMS collaborations

2024/12/22 Higgs Potential 2024, Hefei, China

饮水思源·爱国荣校

Physics Motivation

Section 2018 Section 2018 Explore Beyond the Standard Model:

- Two-Higgs-Doublet Model (2HDM) and Minimal Supersymmetric Standard Model(MSSM)
- Direct insight of Higgs-top yukawa coupling

Output Symmetry Breaking

Challenges:

- Strong interference between signal and SM ttbar background
- Two Higgs Doublet Model (2HDM) and its variation:
- e.g: MSSM, hMSSM
- ◆ 5 Higgs Bosons: h,H,A,H+,H-
- 7 free parameters: **5** Higgs masses, **α**, *tan* β
- Widely used as a benchmark for BSM Higgs searches

ATLAS: Analysis Strategy

- ⊛ Full run 2 dataset (140 fb⁻¹)
- High mass(m_{A/H}): 400-1400GeV
- Solution β is small and mA is large

Two orthogonal channels: 1L (*e* or μ) + 2LOS

- 2L channel: $m_{llbb} \ge 2$ small-R jets , ≥ 1 b-tagged jets
- 1L channel: $m_{t\bar{t}}$
 - ≻ Resolved: ≥4 small-R jets and well reconstructed $t\bar{t}$ system
 - ➤ Merged: ≥1 large -VR jet

HEP08(2024)013

3

Channel Categorization

(a) Split resolved *1l region* into **5** bins of $cos \theta^*$

 \succ Exploit the flat signal and peaked background distributions in $\cos \theta^*$

(a) Split resolved **2***l* region into **5** bins of $\Delta \phi_{ll}$

Enhance the sensitivity to spin-o states

I6 signal regions in total

- 1L merged
- 1L resolved 1b in 5 cos θ * bins
- 1L resolved 2b in 5 cos θ * bins
- 2L in 5 $\Delta \phi_{ll}$ bins

Systematic uncertainties

- NLO MC sample reweighting
- SM $t\bar{t}$ MC samples comparison
- NLO+PS prediction
- Second JER are dominant experimental uncertainties.
 - Reduce the JES affect by re-calibrating to remove the MC dependence

Uncertainty component	Fractional contribution [%]		
	$m_A=800~{\rm GeV}$	$m_A=m_H=500~{\rm GeV}$	
	$\tan\beta=0.4$	$\tan\beta=2.0$	
Experimental	30	42	
Small- R jets (JER, JES)	22	29	
Large- VR jets	11	20	
Flavour tagging	13	17	
Leptons	4	5	
Other $(E_{\rm T}^{\rm miss},$ luminosity, pile-up, JVT)	10	14	
Modelling: SM $t\bar{t}$ and signal	91	79	
$t\bar{t}$ NNLO	49	28	
$t\bar{t}$ lineshape	27	29	
$t\bar{t}$ ME-PS $(p_{\rm T}^{\rm hard})$	36	30	
$t\bar{t}$ ME-PS (h_{damp})	41	25	
$t\bar{t}$ ISR& FSR	9	13	
$t\bar{t}$ PS	29	41	
$t\bar{t}$ cross-section	21	31	
$t\bar{t}$ Scales & PDF	21	16	
m_t	6	4	
Signal	19	9	
Modelling: other	41	16	
W+jets	11	8	
Z+jets	1	2	
Multijet	27	10	
Fakes	<1	1	
Other bkg.	29	10	
MC statistics	18	26	
Total systematic uncertainty	± 100	± 100	
Total statistical uncertainty	< 1	< 1	

B background-only hypothesis ($\mu = 0$)

So significant interference pattern is found in the data

Most significant deviation from SM-only: 2.3σ at $m_A = 800$ GeV, $\Gamma/m = 10\%$

Exclusion on 2HDM and hMSSM

(a) tan β < 3.49 (3.52) are observed (expected) to be excluded for m_A = m_H = 400 GeV in the 2HDM
(a) tan β < 3.16 (3.37) are observed (expected) to be excluded for mA = 400 GeV in hMSSM
(a) The observed exclusion is stronger than the expected exclusion by about 2σ in the mass region m_A = m_H ≈ 850 GeV.

❀ Full run 2 dataset (138 fb⁻¹)

Weigh mass ($m_{A/H}$) : 365-1000 GeV with relative widths of 0.5-25%

CMS: Analysis Strategy

2LOS channel :

- 2 OS ℓ (ee/e μ / $\mu\mu$)
- \geq 2 jets
- \geq 1 jets tagged b

Observables:

- 1l channel: $m_{t\bar{t}}$, $\cos \theta^*$
- 2lOS channel: $m_{t\bar{t}}$, $c_{hel}(\cos\phi)$, $c_{han}(\cos'\phi)$

where φ denotes the angle between the direction of flight of the lepton ℓ^+ (or jet j_1) and of ℓ'^- (or j_2), defined in the *t* or \bar{t} rest frames, respectively.

C_{han}:obtained by flipping the sign of the component parallel to the top quark direction

Il channel :

1ℓ (e/μ)

• \geq 3 jets

CMS-PAS-HIG-22-013

CMS Results

- Data vs. perturbative QCD (pQCD) bkg-only+ A/H boson
- \gg > 5 σ significance for A(365,2%) with respect to bkg-only hypos

Solution \otimes Cross section measurement for the η_t signal model

 \succ σ (η_t)= 7.14 ± 0.77pb (theory 6.42 pb)

Some modeling systematics affecting the $m_{t\bar{t}}$ threshold region.

N. CONTRACTOR

CMS: Model interpretation

$$\mathcal{L}_{\text{Yukawa,A}} = ig_{\text{Att}} \frac{m_{\text{t}}}{v} \overline{\mathsf{t}} \gamma_5 \mathsf{tA}, \qquad \mathcal{L}_{\text{Yukawa,H}} = -g_{\text{Htt}} \frac{m_{\text{t}}}{v} \overline{\mathsf{t}} \mathsf{tH},$$

Single A/H interpretation

- > Top row: pQCD SM background only
- > Bottom row: pQCD + η_t (as bkg)
- Including η_t production in the background leads to a **good** description of the observed data
- No hint for new A/H
- Second real-valued coupling modifier $g_{At_{t}}$ ($g_{Ht_{t}}$) is **0.4 (0.6)** for masses in 365-1000
 GeV and widths 0.5-25%

CMS: Model interpretation

- B Consider η_t as background
- The observed exclusion contours are compatible with zero A+H contribution in all cases.

- Search for ttbar decayed from heavy Higgs boson with interference in ATLAS and CMS
- Several benchmark models very well physics motivated are tested
- Most stringent constraints on the 2HDM, hMSSM and pQCD parameter space

Thanks for your listening!

Backup

- Largest source from SM ttbar modelling
 - NNLO:
 - Uncertainties in reweighting
 - Scale and PDF uncertainties on calculation
 - Uncertainty on EW component from PDFs
 - Line-shape: comparison with MadSpin
 - PS: Pythia vs Herwig
 - Strongest constraint as observed in other ATLAS Top analyses
- Uncertainties from alternative samples with nonnegligible constraints are treated un-correlated across SRs and split into shape/normalization component
 - Considered to be conservative
 - Including PS, ME-PS, ...

Statistical Analysis

Extend likelihood to include interference term

- $\bullet \quad \mu \ S + \sqrt{\mu} \ I + B = (\mu \sqrt{\mu}) \ S + \sqrt{\mu} \ (S+I) + B.$
- Quadratic dependence on μ
 - Design interference-specified statistical method
 - Including offset to handle the negative histograms
 - Choice of test statistics:

• Search stage
$$q_0 = -2\ln \frac{\mathcal{L}(0, \hat{\theta}_0)}{\mathcal{L}(\sqrt{\mu}, \hat{\theta}_{\sqrt{\mu}})}$$

• Exclusion stage $q_{1,0} = -2\ln \frac{\mathcal{L}(1, \hat{\theta}_1)}{\mathcal{L}(0, \hat{\theta}_0)}$

- · Internalate la manalette la materia
-

Extended Higgs Sector Models

arXiv:2209.07510

Additional Singlet

- Simplest extension: $\mathcal{L} \supset \lambda_{\phi S} \phi^2 S^2$, S: real singlet scalar
- Higgs portal → connection to dark sector
- With Z₂ symmetry, 3 new free parameters: mass of the scalar, mixing angle α, ratio of two VEVs tan β
- Couplings inherited from SM h₁₂₅ suppressed by sin α

Additional Singlet + Doublet

- 2HDM+S: 2HDM extended with a complex singlet
- Additional CP-odd/even scalars wrt pure 2HDM
- Required by next-to-minimal supersymmetric SM (NMSSM)

Additional Doublet

- Two Higgs Doublet Models (2HDMs): additional SU(2)
 doublet → Richer phenomenology
- Required by SUSY → received a lot of attention over time
- Standard parametrization: $\tan \beta$, α , masses
- 5 physical scalar states: two neutral CP-even (H, h), one neutral CP-odd (A) and two charged (H[±])
- In the alignment limit $(\cos(\beta \alpha) \rightarrow 0)$: h = h₁₂₅

•	Yukawa	couplings:	λ_f^{SM}	$=\frac{\sqrt{1}}{1}$	$\frac{1}{2}$ m _f	, λ_f^{BSM}	=	$\frac{\eta_f}{\tan\beta}\lambda_f^S$	М
---	--------	------------	------------------	-----------------------	------------------------------	---------------------	---	---------------------------------------	---

	Type-I	Type-II	Type-L	Type-F
η_u	1	1	1	1
η_d	1	$-\tan^2\beta$	1	$-\tan^2\beta$
η_l	1	$-\tan^2\beta$	$-\tan^2\beta$	1

ATLAS: statistical data analysics

of
$$m_{A/H}$$
 and $\tan \beta$. In a type-II 2HDM, the $\tan \beta$: $g_{At\bar{t}} = 1/\tan \beta$ and $g_{Ht\bar{t}} = -1/\tan \beta$.

$$\begin{split} (S+I)_{g^2_{A/Ht\bar{t}}} &= g^4_{A/Ht\bar{t}} \cdot S \,+\, g^2_{A/Ht\bar{t}} \cdot I \\ &= (g^4_{A/Ht\bar{t}} - g^2_{A/Ht\bar{t}}) \,\cdot\, S \,+\, g^2_{A/Ht\bar{t}} \,\cdot\, (S+I). \end{split}$$

CMS and ATLAS comparison

ATLAS Selection table

• resolved and merged signal regions in the 1-lepton channel

Selection	Criteria			
Common selection				
Run and event cleaning	All detector components with acceptable conditions			
Single lepton trigger	Separate single-electron or single-muon triggers			
Exactly one lepton	Exactly one e or μ with $p_{\rm T} > 28 {\rm GeV}$.			
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$			
$E_{\rm T}^{\rm miss} + W$ transverse mass	$E_{\mathrm{T}}^{\mathrm{miss}} + m_T^W > 60 \mathrm{GeV}$			
b-tagging	≥ 1 b-tagged jet			
Merged-topology selection				
Large- VR jet	≥ 1 large- VR jet, $p_{\rm T} > 200 {\rm GeV}$			
Top tagging (hadronic decay)	Large-VR jet mass consistent with $m_{\rm top}$: $m > 100 {\rm GeV}$			
Candidate b -jet (leptonic decay)	≥ 1 jet with $\Delta R~(\ell, {\rm R}{=}0.4~{\rm jet}) < 2.0$			
	ΔR (candidate <i>b</i> -jet, ℓ) < 2.0			
Back-to-back $t\bar{t}$ topology	$\Delta R~(\text{large-}VR~\text{jet},\text{candidate}~b\text{-jet}) > 1.5$			
	$\Delta R \ (\text{large-}VR \ \text{jet}, \ell) > 1.5$			
Matching of b -jets and top candidates	≥ 1 top candidate reconstructed with exactly one $b\text{-jet}$			
Resolved-topology selection				
Small- R jets	≥ 4 jets, $p_{\rm T} > 25 {\rm GeV}$			
Well-reconstructed $t\bar{t}$ system	$\log_{10}(\chi^2) < 0.9$			
Matching of b -jets and top candidates	≥ 1 top candidate reconstructed with exactly one $b\text{-jet}$			
Veto events passing merged-topology selection				

A χ^2 minimisation approach is used to select the four jets from the $t\bar{t}$ decay from all selected small-R jets and assign them to the leptonically- and hadronically- decaying top quarks. It is defined as follows:

$$\chi^{2} = \left[\frac{m_{jj} - m_{W_{h}}}{\sigma_{W_{h}}}\right]^{2} + \left[\frac{(m_{jjb} - m_{jj}) - m_{t_{h} - W_{h}}}{\sigma_{t_{h} - W_{h}}}\right]^{2} + \left[\frac{m_{jl\nu} - m_{t_{l}}}{\sigma_{t_{l}}}\right]^{2} + \left[\frac{(p_{T,jjb} - p_{T,jl\nu}) - (p_{T,t_{h}} - p_{T,t_{l}})}{\sigma_{\text{diff}p_{T}}}\right]^{2}.$$
(7.1)

CMS Ranking

The dominant contributions arise
 from modeling uncertainties,
 particularly those affecting the mtt
 threshold region.

CMS: A+H interpretation

Figure 12: Frequentist 2D exclusion contours for $g_{At\bar{t}}$ and $g_{Ht\bar{t}}$ in the A+H interpretation for four different signal hypotheses: A(365, 2%) + H(365, 2%) (upper left), A(365, 2%) + H(1000, 5%) (upper right), A(1000, 5%) + H(365, 2%) (lower left), and A(1000, 5%) + H(1000, 5%) (lower right). The expected and observed contours, evaluated with the Feldman– Cousins prescription [108], are shown in black and red, respectively, with the solid and dashed lines corresponding to exclusions at 68 and 95% CL, and the respective best-fit points for $g_{At\bar{t}}$ and $g_{Ht\bar{t}}$ are shown as the colored crosses. In all cases, the η_t contribution is considered as part of the background.

(a) $\mu_{10Pb}^{A(365,2\%)}$ is far from the origin of zero signal contribution, with a local significance beyond five standard deviations.

