

Search for triple Higgs boson production in the 6b final state at 13TeV with the ATLAS detector

Jing Chen

2024 .12.22

Higgs Potential 2024

2018-05-06 03:37:28 UTC

$HHH \rightarrow 6b$

HIGGS POTENTIAL

$$V(H) = \frac{1}{2}m_H^2 H^2 + \lambda_3 \nu H^3 + \lambda_4 H^4 + O(H^5)$$

- SM tri-Higgs production is sensitive to tri-linear and quartic Higgs self-couplings ($\lambda_3 \& \lambda_4$).

 h_i

- Constrain modifications to SM coupling values ($\kappa_3 \& \kappa_4$ no experimental bounds before).
- Quartic couplings can only be accessed directly this way.
- Small SM tri-Higgs ggF production cross-section at \sqrt{s} =13TeV : ~ 0.079fb at NNLO.
- Some BSM theories predict nontrivial tri-Higgs production.
- Rare process \rightarrow 6b final state (large $\gamma\gamma\gamma\gamma$ branching ratio: $H \rightarrow b\overline{b} \sim 58\%$).

HHH production - BSM

- Two Real Singlet Model (TRSM)
 - Extending the SM by adding two real scalar bosons **X** and **S**.
 - LO productions reach cross-section values of up to ~ 50fb.
 - Mass ranges: $m_X > m_S$, 325 < m_X <575 GeV, 200 < m_S <350 GeV (fulfill perturbative unitarity bounds).
 - Resonant + non-resonant, all LO ggF production modes (BSM + SM).
- Simple model for dark matter and CP violation (<u>DM-CPV</u>)
 - Dark matter is vector-like dark fermion.
 - Interacting with SM through scalars similar as the scalars in TRSM.
 - Negligible differences are found in the HHH event kinematics between the TRSM and DM-CPV models.

- Simplified TRSM model
 - TRSM breaks unitarity at high masses, and becomes dominated by the non-resonant diagrams. Simplify model to avoid TRSM problems.
 - Only consider **resonant ggF production** $(X \rightarrow SH \rightarrow HHH)$.
 - $m_X > m_S$, 550 < m_X < 1500 GeV, 275 < m_S <1000 GeV.

Analysis overview

- Datasets: 126 fb⁻¹.
- Three interpretations based on the kinematics of the signal models.
 - **Non-resonant**: $m_S < 2m_H$ (250 GeV).
 - **Resonant**: $m_S > 2m_H$ (250 GeV).
 - Heavy resonant: generic heavy resonances (narrow & wide decay widths), m_S >275GeV, m_X > 550 GeV.
- Each search follows the same general analysis strategy.
- Dominant background: QCD multi-jet production. Estimate by **data-driven** method.
- A profile likelihood is performed on **Deep Neural Network (DNN) score** to obtain the final results.

Jet pairing

• Pairing efficiencies:

SM-like \sim 60%

Resonant TRSM ~ **50%**

Heavy resonant $\sim 80\%$

- To help discriminate signal and background.
- Three Higgs boson candidates:
 6 jets are selected & paired. 15 ways to pair them.
- Pairing algorithm:
 - minimizing $|m_{H1} 120 \text{ GeV}| + |m_{H2} 115 \text{ GeV}| + |m_{H3} 110 \text{ GeV}|$

For 5b (4b) events:

5 b-jets + Leading of the remaining jets

For 6b events:

Deep Neural Network

- DNN output is used as the final discriminant.
- Training samples:
 - Background: 5b data
 - Signal: nonresDNN (6b SM HHH + 6b TRSM non-resonant), resDNN (all 6b resonant TRSM), heavyresDNN (all 6b heavy resonance)
- For each DNN, ten variables (good shape separation, minimal correlation with the *b*-jet multiplicity) are chosen as inputs.

Background estimation

- Dominant background: QCD multi-jet production. Estimate by data-driven method. ۲
- Assumption: kinematic properties of the background do not significantly change relative to *b*-jet ٠ multiplicity (validate by double ratio). Normalized to 6b yields
- Extrapolation: $4b \rightarrow 5b \rightarrow 6b(SR)$, ٠ extrapolate shape in b-tag multiplicity, normalized to 6b yields.
 - **Excluded region**: large shape
 - difference between 4b, 5b and 6b, exclude from fit. **Low-score region**: B-tag extrapolation, validate background estimate, derive background estimate, derive shape systematics.
 - High-score region: 6b SR.

Double ratio: $\frac{R_{6b/5b}}{R_{5b/4b}} \sim 1$

Extrapolate the shape of DNN score

Uncertainty source	Relative impact of systematic uncertainties [%]						
	SM-like	TRSM non-resonant	TRSM resonant	Heavy resonance			
All uncertainties	24	20–46	33–42	24–53			
Experimental	22	20–45	33–41	24–53			
Detector response	7.4	6.6–14	16–24	4.1–15			
Luminosity and pileup	<1	<1	<1	<1			
Flavor tagging	3.2	2.8–5	6.9-8.8	1.5-5.6			
Jet reconstruction	2.7	2.3-6.5	3.6-7.1	1.0-6.3			
Trigger efficiency	2.0	1.8-3.5	6-10	1.4-4.2			
Background modeling	16	14–36	18–30	20–45			
Theoretical	1.5	<1	<1	<1			
MC statistical	<1	<1	<1	<1			

- Background shape uncertainty is the dominate one in experimental uncertainties. The expected limit are changed from 14% to 45%.
- Theoretical uncertainties: (α_s +PDF) & QCD scale.

Non-resonant & resonant interpretations

- In all cases, the observed data agree well with the background, and **no significant excess** is seen.
- In non-resonant interpretation: largest deviation is at $(m_X, m_S) = (550, 200)$ GeV with 0.19 σ .
- In resonant interpretation: signal strength $\mu = 0$.

Non-resonant & resonant interpretations

- Cross-section upper limits in the (m_X, m_S) plane of non-resonant interpretation and resonant interpretation. (Observed: 48~310 fb.)
- SM HHH production:

$$\mu = \frac{\sigma_{HHH}}{\sigma_{HHH}^{SM}} \sim 750$$

Observed cross-section upper limit: 59*fb*

Heavy resonant interpretation

- In all cases, the observed data agree well with the background, and **no significant excess** is seen.
- In heavy resonant interpretation: largest deviation is at $(m_X, m_S) = (1500, 275)$ GeV with 0.51σ .
- Observed limits for the narrow heavy resonance signals:

12

Heavy resonant interpretation

- In all cases, the observed data agree well with the background, and **no significant excess** is seen.
- In heavy resonant interpretation: largest deviation is at $(m_X, m_S) = (1500, 275)$ GeV with 0.51σ .
- Observed limits for the wide heavy resonance signals:

13

- **Constraints on quartic coupling** set for the first time.
- Degeneracy of $\sigma_{HHH}(\kappa_3, \kappa_4)$.
- At the 95% CL none of the phase space inside the unitarity bounds is excluded.

In the SM: $\kappa_3 = \kappa_4 = 1$

Assuming $\kappa_4 = 1$, κ_3 : -11~17 at 95% CL. Assuming $\kappa_3 = 1$, κ_4 : -230~240 at 95% CL.

- Search for tri-Higgs production in 6b final state with $126 f b^{-1}$ ATLAS run2 data. It's the **first search of such topology at the LHC!**
- Three different DNNs are used in non-resonant (including a search for SM like signals), resonant and heavy resonant interpretations. Data-driven method is used to estimate background.
- No significant excess observed in the search for SM like and various BSM signals. Constrains of κ_3 and κ_4 (for the first time) are presented.

arXiv:2411.02040

• Relevant talk in Higgs Potential 2024:

<u>Higgs Potential From Standard Model to EFT and UV Models</u> – Hao-Lin Li

上海交通大学 SHANGHAI JIAO TONG UNIVERSITY

谢谢

TRSM structure

PFlow jets, $p_T > 20$ GeV, $|\eta| < 2.5$ B-tagged by DL1d 77% working point μ -in-jet correction for semi-leptonic b-hadron decay

Jet pairing efficiency

Jet pairing efficiency

20

DNN

Variable	Definition	nonres	res	heavyres		
<i>m_H</i> -radius	Euclidean distance between the event and the pairing center (120, 115, 110) GeV in the (m_{H1}, m_{H2}, m_{H3}) volume.	\checkmark		\checkmark		
m_{H1}	Reconstructed mass of the highest $p_{\rm T}$ Higgs boson candidate.	\checkmark		√		
$RMS(m_{jj})$	Root-mean-squared (RMS) of the invariant mass of all possible jet pairs that can form a Higgs boson candidate.	\checkmark		\checkmark		
$RMS(\Delta R_{jj})$	RMS of the angular separation between all possible jet pairs that can form a Higgs boson candidate.	\checkmark	\checkmark	\checkmark		
$RMS(\eta)$	RMS of the pseudo-rapidity of the Higgs boson candidates.	\checkmark		\checkmark		
Skewness ΔA_{jj}	Skewness of $\cosh(\Delta \eta_{ik}) - \cos(\Delta \phi_{ik})$, where <i>i</i> , <i>k</i> are all possible jet pairs that can form a Higgs boson candidate.		\checkmark			
H_T^{6j}	Scalar sum of the $p_{\rm T}$ of the 6 jets selected to reconstruct the 3 Higgs boson candidates.		\checkmark			
$\cos \theta$	In the (m_{H1}, m_{H2}, m_{H3}) coordinate system, θ is the angle between the vector from the origin to the event's recon- structed mass of the Higgs boson candidates, and the vector from the origin to (120, 115, 110) GeV.		~			
Aplanarity _{6j}	The fraction of $p_{\rm T}$ from the 6 jets selected to reconstruct the 3 Higgs boson candidates lying outside the plane formed by the 2 highest $p_{\rm T}$ jets.	\checkmark	\checkmark	\checkmark		
Sphericity _{6j}	Isotropy of the momenta of the 6 jets selected to reconstruct the 3 Higgs boson candidates.		\checkmark			
Transverse Sphericity _{6j}	Isotropy of the p_T of the 6 jets used for Higgs reconstruction, within the $x - y$ plane.	\checkmark				
Sphericity	Isotropy of the momenta of all jets in the event.			\checkmark		
$\eta - m_{HHH}$ fraction	$\frac{\sum_{i,k} 2p_{T}^{i}*p_{T}^{k}*(\cosh(\Delta\eta(ik))-1)}{m_{HHH}^{2}}$ where <i>i</i> , <i>k</i> are all possible jet pairs that can form a Higgs boson candidate, and m_{HHH} is the reconstructed tri-Higgs invariant mass.		\checkmark			
ΔR_{H1}	Angular separation between the jets paired to form the highest $p_{\rm T}$ Higgs boson candidate.	\checkmark	\checkmark	\checkmark		
ΔR_{H2}	Angular separation between the jets paired to form the second-highest $p_{\rm T}$ Higgs boson candidate.	\checkmark	\checkmark	\checkmark		
ΔR_{H3}	Angular separation between the jets paired to form the lowest $p_{\rm T}$ Higgs boson candidate.	\checkmark	\checkmark	\checkmark		21

Background estimation

• The non-closure in the extrapolation method in low-score region is used to estimate the systematic uncertainty.

$$D(\nu) = \frac{\left(N^{6b}/N^{5b}\right)_{(\nu)}}{N^{6b}/N^{5b}} \div \frac{\left(N^{5b}/N^{4b}\right)_{(\nu)}}{N^{5b}/N^{4b}}$$

 ν :DNN input variables

• The shape variations are always smaller than the statistical uncertainty.

Non-resonant & resonant interpretation

• Cross-section upper limits in the (m_X, m_S) plane of non-resonant interpretation and resonant interpretation.

Self-coupling interpretation

• Theoretical dependence on κ_3 and κ_4 .

$\sigma(c_3,d_4)_{hhh}$	$1 - 0.0309 \times c_{2}^{4} - 0.2079 \times c_{3}^{3}$			
$\sigma(\mathrm{SM})_{hhh}$	$1 = 0.0507 \times c_3 0.2077 \times c_3$			
	$+ 0.0407 \times c_3^2 d_4 + 0.7384 \times c_3^2$			
$c_3 = \kappa_3 - 1$	$+ 0.0156 \times d_4^2 - 0.1450 \times c_3 d_4$			
$d_4 = \frac{\kappa_4}{1} - 1$	$-0.1078 \times d_4 - 0.6887 \times c_3$.			
In SM:	$\kappa_3 = \kappa_4 = 1$			
$\sigma_{\rm HHH}^{min}(\kappa_3,\kappa_4)$:	<i>κ</i> ₃ ~2, <i>κ</i> ₄ ~8			
$\sigma_{\rm HHH}^{min}(\kappa_3,\kappa_4=1):\kappa_3\sim 1.6$				
$\sigma_{\rm HHH}^{min}(\kappa_3=1,$	κ_4): $\kappa_4 \sim 4.5$			