

ATLAS non-resonant HH—> bbtautau at Run 2

Liangliang Han Nanjing University

Higgs Potential 2024, Dec 19-23, 2024

Outline

- Motivation
- Analysis strategy
- Event selection
- Event categorization
- Background estimation
- Results
- Summary

Publication: Phys. Rev. D 110 (2024) 032012 (this talk)

2017-10-31 00:02:20 CEST

Motivation

The structure of Higgs potential is important to

- Test the electroweak theory of standard model
- Learn more about the thermal evolution in the early universe \bullet
- Better understand the stability of the cosmic vacuum lacksquare

-> Its shape can be probed by determining the Higgs self-coupling in HH search at LHC

$$V(\Phi) = -\mu^{2}(\Phi^{\dagger}\Phi) + \lambda(\Phi^{\dagger}\Phi)^{2} = \frac{1}{2}m_{H}^{2}H^{2} + \frac{\lambda vH^{3}}{4} + \frac{\lambda}{4}H^{4}$$

Higgs potential Electroweak symmetry breaking

Trilinear self-coupling term

HH production

→ SM HH production @ LHC

Dominant process is gluon-gluon fusion (ggF), $\sigma_{ggF}^{SM} = 31 \, fb$

• Sub-dominant process is vector-boson fusion (VBF) , $\sigma_{VBF}^{SM} = 1.7 \, fb$

→ BSM HH production

- Lead to significant enhancement to HH production
- Allowed in many BSM scenarios, which makes it possible to probe new physics

Analysis strategy

- \rightarrow One of the "golden 3" channels, ~7.3% branching ratio

-> Targeting at non-resonant HH—>bbtautau signal (2 b-tagged jets + OS tau-leptons)

-> Two analysis channels, depending on the Di-tau decay mode: hadhad and lephad

Analysis strategy

-> Re-analysis of the full Run 2 dataset based on previous analysis, which:

- Only optimized for SM HH ggF mode—> inclusive ggF SR
- Signal extraction: BDT in hadhad, Neural Network (NN) in lephad
- This analysis:
- → Data samples: full Run 2 dataset @ 13TeV
- Signal extraction: Optimized BDT for both lephad and hadhad channel
- Targeting at both ggF and VBF production modes
- → Main backgrounds

Top quark, Z boson + jets (heavy flavor), multi-jet, diboson, single Higgs boson

Event selection $HH - > b\bar{b}\tau^+\tau^-$

→ Search for HH with bbtautau final states

$\tau_{lep}\tau_{had}$ $\tau_{had}\tau_{had}$

Single Lepton (e/μ) triggers (SLT) Single τ_{had} triggers (STT)

Or Lepton + τ_{had} triggers (LTT) Or Di- τ_{had} triggers (DTT)

Offline Requirements Passed

m^{MMC} [*] > 60 GeV Opposite-sign of $e/\mu/\tau_{had}$ and τ_{had} Exactly two b-tagged jets One (tight) e or (medium) μ No loose e/μ One (loose) τ_{had} M_{bb} < 150 GeV Two (loose) τ_{had}

Triggers

ent Selection > L

Event categorization

-> Extended categorization (VBF, low ggF and high ggF) for each sub-channel • To improve the constraint on κ_{λ} and κ_{2V}

mHH categorization to further improve the κ_{λ} constraint

Train dedicated BDT in the three regions

ggF vs VBF categorization BDT

→ A dedicated ggF vs VBF categorization BDT is trained

- To separate VBF HH from ggF HH on the events with 4 jets (2 VBF-jet candidates + 2 H->bb)
- Input variables are typically VBF-related quantities and event shape variables (Fox Wolfram Moments) m_{ii}^{VBF} $\Delta \eta_{ii}^{\text{VBF}}$ $\Delta R_{ii}^{\text{VBF}}$ VBF $\eta_0 \times \eta_1$
- Working point: cut value scan on the categorization BDT

Signal extraction BDT

3-fold training \rightarrow

- Divide events into 3 folds based on the event number \bullet
- Train 3 BDTs on each fold, and optimized and applied on other folds

Model	Fold 0 event_number %3 = 0	Fold 1 (event_number $\%3 = 1$)	Fold 2 (event_number
BDT 0	Training	Validation	Testing
BDT 1	Testing	Training	Validation
BDT 2	Validation	Testing	Training

Input variables selection

- Gradually add one more variable with the most improvement to the sensitivity
- Until reach a plateau where the sensitivity doesn't increase any more

Hyperparameter optimization

• Take the set of hyper parameters that gives best significance

All events are used in training, validation and test :)

Background estimation

multijet with jet->tau fakes

Use fake factor method (From anti-ID CR extrapolated into SR)

- ZCR: bbll trigger selection Exactly 2 OS muons or electrons Exactly 2 b-tagged jets mll window 75-110 GeV mBB < 40 GeV or mBB > 210 GeV
- Typical norm factors

Z+HF	1.34 ± 0.08
ttbar	0.96 ± 0.03

11

Background estimation

→ Improved MC description

• Inclusion of ttbar di-lepton sample

• V+jets changeover from sherpa 2.2.1 to 2.2.11

Reduction of the MC statistical uncertainty by a factor of ~2

12

BDT score distributions

hadhad channel \rightarrow

low mHH ggF

Signal is extracted by a simultaneous fit to all SRs and the CR!

high mHH ggF

VBF

*Binning is determined by algorithms to optimize sensitivity while ensuring valid background stat.

BDT score distributions

→ lephad SLT channel

low mHH ggF

high mHH ggF

Mild data excess in the last bin of lephad SLT high mHH ggF, statistical fluctuation

VBF

14

BDT score distributions

lephad LTT channel \rightarrow

low mHH ggF

high mHH ggF

Systematic uncertainty

pha_SysTHEO_XS_SCALEMTop_ggFSMHH 3Min350_T2_L1_SpcTauLH_Y6051_bin_12 alpha_SysTHEO_ACC_Zhf_GENERATOR 3_SysTHEO_ACC_StopWt_TopInterference alpha_SysTHEO_ACC_HF_ggFH ATOR_SpcTauHH_BMin350_DLLOSGGFSR _BMin350_T2_L0_SpcTauHH_Y6051_bin_8 alpha_SysTHEO_ACC_TTBAR_ME _BMin350_T2_L0_SpcTauHH_Y6051_bin_9 Min350_T2_L0_SpcTauHH_Y6051_bin_10 SysTAUS_TRUEHADTAU_EFF_RNNID_SYST alpha_SysTHEO_ACC_TTBAR_FSR 3Min350_T2_L1_SpcTauLH_Y6051_bin_11 n350_T2_L1_SpcTauLHLTT_Y6051_bin_12 ATLAS_norm_ttbar alpha_SysTHEO_XS_PDFalphas_ggFSMHH alpha_SysFFVarrQCD &_BMin0_T2_L0_SpcTauHH_Y6051_bin_11 alpha_SysTHEO_ACC_TTBAR_PS alpha_SysFT_EFF_Eigen_B_1

Leading uncertainty: ggF signal modeling

 Uncertainty in the ggF HH production crosssection arising from variations of the QCD scales and the top-quark mass scheme

Statistical uncertainty of bkg MC samples

Uncertainty related to single-top Wt modeling

Results: HH cross section

No significant excess observed above the expected background

95% CL upper limit on μ_{HH}

 $\mu_{HH} < 5.9$ observed

 μ_{HH} < 3.3 expected, **15% reduction wrt previous analysis**

Set 95% CL upper limits simultaneously on ggF and VBF production cross section

 $\mu_{ggF} < 5.8$ observed

 μ_{ggF} < 3.4 expected

 $\mu_{VBF} < 91$ observed

 μ_{VBF} < 73 expected

Observed limit higher than expected due to a statistical fluctuation in the lephad SLT high mHH SR.

Results: constraint on Higgs self coupling

\rightarrow Constrain the modifier κ_{λ} and κ_{2V}

 $\kappa_{\lambda} \in [-3.1, 9.0]$ observed

 $\kappa_{\lambda} \in [-2.5, 9.3]$ expected, **11% reduction**

 $\kappa_{2V} \in [-0.5, 2.7]$ observed

 $\kappa_{2V} \in [-0.2, 2.4]$ expected, **19% reduction**

18

Summary

- \rightarrow Overview of the Legacy Run 2 non-resonant HH—>bbtautau analysis
- No significant excess above the expected background is observed
- → 15% improvement on the expected signal strength 10% - 20% improvement on the expected κ_{λ} and κ_{2V} constraint
- Looking forward to the Run 2 + Run 3 results

Backup

Overview of analysis strategy

\rightarrow A sketch depicting the analysis strategy

hadhad channel

lephad SLT channel

lephad LTT channel

Analysis strategy

\rightarrow A sketch depicting the analysis strategy (9 SRs + 1 CR)

ggF

3 channels per di- τ decays Optimize trigger strategy **3 signal regions** per production mode and m_{HH} split Improve κ_{2V} constraint **1** control region

Improve bkg modelling

Dedicated MVA study with hyper-param and input var optimization

Event selection

	$ au_{ m had} au_{ m had}$	category		
SJ	T	D D)TT	
			e/µ	select
	No loo	ose e/μ		
				s sele
	Two loo	se $ au_{\text{had-vis}}$	- nau- vi	5
р _т 100, 140, 18	> 0 (25) GeV	$p_{\rm T} > 40$	(30) GeV	
			Jet s	select
			≥ 2 jets v	with
Leading jet p	$v_{\rm T} > 45 { m GeV}$	Trigger	dependent]
			Event-le	evel se
			Trigger requ	iireme
			Collision ver	tex re
			$m_{ au au}^{ m MMC}$	> 60
		Opposite-si	gn electric cha	rges o
			Exactly tw	'o <i>b-</i> ta

ction

Exactly one loose e/μ $e(\mu)$ must be tight (medium and have $|\eta| < 2.5$) $p_T^e > 25, 27 \text{ GeV}$ 18 GeV < $p_T^e < \text{SLT cut}$ $p_T^{\mu} > 21, 27 \text{ GeV}$ 15 GeV < $p_T^{\mu} < \text{SLT cut}$

lection

One loose $\tau_{\text{had-vis}}$ $|\eta| < 2.3$

 $p_{\rm T} > 30 {\rm ~GeV}$

ction

 $|\eta| < 2.5$ Leading jet $p_{\rm T} > 45$ GeV

Trigger dependent

selection

nents passed

reconstructed

50 GeV

s of $e/\mu/\tau_{\text{had-vis}}$ and $\tau_{\text{had-vis}}$

tagged jets

 $m_{bb} < 150 \text{ GeV}$

-> In each sub-channel (hadhad, lephad SLT, lephad LTT), 3 different BDTs trained:

- Train on SM VBF signal vs bkg
- 3-fold training
- Input variables selection
- Optimized hyperparameters
- Train on SM ggF signal vs bkg
- 3-fold training
- Input variables selection
- Optimized hyperparameters
- Train on $\kappa_{\lambda} = 10$ ggF signal vs bkg
- 3-fold training
- Input variables selection
- Optimized hyperparameters

Categorization

→ 3-fold training

- Divide events into 3 folds based on the event number \bullet
- Train 3 BDTs on each fold, and optimized and applied on other folds

Model	Fold 0 event_number %3	Fold 1 = 0 (event_number $\%3 = 1$)	Fold 2 (event_number $\%3 = 2$)	Model	Even-fold	Odd-fold
BDT 0 BDT 1 BDT 2	Training Testing Validation	Validation Training Testing	Testing Validation Training	BDT 0 BDT 1	4/5 for training 1/5 for validation Testing	Testing 4/5 for training 1/5 for validation
Allev	ents are used	d in training, validat	Training Validation Test	Previor 5-fold Only 8	us round of th cross validations 0% of events	n used for traini
	10 ⁻²					

Input variables selection \rightarrow

- Firstly choose a few variables as the baseline variables
- Gradually add one more variable with the most improvement to the sensitivity
- Until reach a plateau where the sensitivity doesn't increase any more

				trafo6	_total_s	ig_val
+ mBB (0.3%)	+ dRBB (0.3%)	+ mMMC (0.1%)	+ thrust_ttjf (0.3%)	+ spher_ttjf (-0.1%)	+ fwm4_ttjf (-0.0%)	+ circ_ttjf (-0.2%)
	S	Stop	at tl	he p	late	au

Hyperparameter optimization (on validation folds) \rightarrow

- Scan the two most important parameters: NTrees and MaxDepth
- The binned signal significance as the figure
- Take the set of hyper parameters that gives best significance

ure of merit
$$Z = \sqrt{\sum_{i \in \text{bins}} 2\left((s_i + b_i)\log\left(1 + \frac{s_i}{b_i}\right) - s_i\right)}$$

Background estimation — Fake tau-had in hadhad channel

Two sources: Multi-jet process and ttbar process

Fake tau-had from multi-jet: FF method

- FFs are derived in 1 b-tag SS control region
- Extrapolated to 2 b-tag SS control region by a transfer factors (TFs)

→ Fake tau-had from ttbar: Fake scale factors

- Fake tau-had Scale factors (SF)
- Measured in the lephad ttbar CR by fitting m_T^W to data
- Applied to simulated fake-tau ttbar in SR

Ranking plot

pha_SysTHEO_XS_SCALEMTop_ggFSMHH 3Min350_T2_L1_SpcTauLH_Y6051_bin_12 alpha_SysTHEO_ACC_Zhf_GENERATOR 3_SysTHEO_ACC_StopWt_TopInterference alpha_SysTHEO_ACC_HF_ggFH ATOR_SpcTauHH_BMin350_DLLOSGGFSR BMin350_T2_L0_SpcTauHH_Y6051_bin_8 alpha_SysTHEO_ACC_TTBAR_ME _BMin350_T2_L0_SpcTauHH_Y6051_bin_9 Min350_T2_L0_SpcTauHH_Y6051_bin_10 SysTAUS_TRUEHADTAU_EFF_RNNID_SYST alpha_SysTHEO_ACC_TTBAR_FSR 3Min350_T2_L1_SpcTauLH_Y6051_bin_11 n350_T2_L1_SpcTauLHLTT_Y6051_bin_12 ATLAS_norm_ttbar ilpha_SysTHEO_XS_PDFalphas_ggFSMHH alpha_SysFFVarrQCD X_BMin0_T2_L0_SpcTauHH_Y6051_bin_11 alpha_SysTHEO_ACC_TTBAR_PS alpha_SysFT_EFF_Eigen_B_1

→ Leading uncertainty: ggF signal modeling

- Uncertainty in the ggF HH production crosssection arising from variations of the QCD scales and the top-quark mass scheme
- Statistical uncertainty of bkg MC samples
- Uncertainty related to single-top Wt modeling

→ Impact of uncertainties

 $t\bar{t}$ processes. The combined impact of all sources of systematic uncertainties leads to an increase in the expected upper limits on the signal strength μ_{HH} by 23% and to a widening of the expected 95% CI for κ_{λ} and κ_{2V} by 9% and 2%, respectively, with respect to the case in which systematic uncertainties are neglected (excluding the $t\bar{t}$ and Z + HF floating normalization and MC statistical uncertainties).

Breakdown of the improvements

→ Hadhad channel

- For upper limit on HH signal strength, the improvement equally comes from new BDT binning, the usage of improved samples, the new optimized BDT
- For κ_{λ} interval, the new optimized BDT brings largest relative improvement
- For $\kappa 2v$ interval, the introduction of a dedicated VBF SR brings largest relative improvement

		simultaneous fit								
MCStat+Float Fit	Upper limit on $\mu_{_{\rm HH}}$		Upper limit on μ_{VBF}		Upper limit on μ_{ggF}		95% Confidence interval for κ_{λ}		95% Confidence interval for $\kappa_{_{2V}}$	
Baseline (previous analysis) without systematics	3.46		778		12.5		[-2.79, 9.58]		[-0.58, 2.71]	
Baseline with new BDT output transformation (<i>trafo60,</i> ≥ 1 bkg evt/bin)	3.28	-5.2%	713	-8%	11.3	-10%	[-2.73, 9.56]	-0.6%	[-0.51, 2.64]	-4.3%
Moving to Sherpa 2.2.11, extending the ttbar sample	3.09	-10.7%	747	-4%	11.9	-5%	[-2.64, 9.49]	-1.9%	[-0.48, 2.60]	-6.4%
New BDT (architecture + variables) w/ one inclusive SR	2.94	-15.0%	630	-19%	9.51	-24%	[-2.31, 9.01]	-8.5%	[-0.52, 2.66]	-3.3%
High m _{нн} , low m _{нн} categorisation for ggF SR + VBF SR (each with own BDT)	2.92	-15.6%	90	-88%	3.04	-76%	[-2.34, 8.85]	-9.5%	[-0.34, 2.51]	-13.4%

Other results

→ Signal strength upper limits

		μ_{HH}	$\mu_{ m ggF}$	$\mu_{ m VBF}$	$\mu_{\rm ggF}~(\mu_{\rm VBF}=1)$	$\mu_{\rm VBF}~(\mu_{\rm ggF}=1)$
$ au_{ m had} au_{ m had}$	Observed	3.4	3.6	87	3.5	80
	Expected	3.8	3.9	102	3.9	99
$\tau_{\rm lep} \tau_{\rm had} { m SLT}$	Observed	17	17	136	17	158
iop into	Expected	7.2	7.4	129	7.4	127
$\tau_{\rm lep} \tau_{\rm had} \ { m LTT}$	Observed	23	18	765	22	733
iop nuu	Expected	20	21	359	20	350
Combined	Observed	5.9	5.8	91	5.9	93
	Expected	$3.3^{+1.7}_{-0.9}$	$3.4^{+1.8}_{-1.0}$	73^{+32}_{-21}	$3.4^{+1.8}_{-0.9}$	72^{+32}_{-20}

Signal strength

The maximum-likelihood estimator for the total *HH* production signal strength is found to be $\hat{\mu}_{HH} = 2.2 \pm 1.7$ by the combined fit to data. The uncertainty in the fitted

Jocal significance

with the $m_{\ell\ell}$ distribution from the dedicated CR. The observed limit on μ_{HH} from the combined fit is looser than the expected one as a result of an excess in the $\tau_{\rm lep}\tau_{\rm had}$ SLT

→ Significance

bined fit to data. An observed 95% CL upper limit of 5.9 is set on μ_{HH} , to be compared with an expected limit of 3.3 in the background-only hypothesis ($\mu_{HH} = 0$), corresponding to an observed (expected) significance with respect to the background-only hypothesis of **1.4(0.75)** σ . From the

SR, in the high- m_{HH} category. This excess corresponds to a local significance of 2.3σ with respect to the SM hypothesis ($\mu_{HH} = 1$), and a local significance of 2.7σ with respect to

Other results

 \rightarrow Two-dimensional contours of κ_{λ} and κ_{2V}

 κ_λ

