Higgs Potential 2024 (Hefei)

Testing Phase Transition and cosmological history at colliders

Collaborators: Yizhou Cai, Hao-Lin Li, Kun Liu, Michael Ramsey-Musolf, Lei Zhang

Ref: JHEP 12 (2023) 018,

JHEP 01 (2024) 051,

Phys.Lett.B 833 (2022) 137301

arXiv: 2307.02187

Wenxing Zhang(Hebei U.)

Bayon asymmetry of the Universe

WX-ZHANG @HIGGS POTENTIAL, HEFEI

Cosmic Energy Budget

Bayon asymmetry of the Universe

44 different ways to creat baryons in the Universe

- 1. GUT baryogenesis
- 2. GUT baryogenesis after preheating
- 3. Baryogenesis from primordial black holes
- 4. String scale baryogenesis
- 5. Affleck-Dine (AD) baryogenesis
- 6. Hybridized AD baryogenesis
- 7. No-scale AD baryogenesis
- 8. Single field baryogenesis
- 9. Electroweak (EW) baryogenesis
- 10. Local EW baryogenesis
- 11. Non-local EW baryogenesis
- 12. EW baryogenesis at preheating

- 13. SUSY EW baryogenesis
- 14. String mediated EW baryogenesis
- 15. Baryogenesis via leptogenesis
- 16. Inflationary baryogenesis
- 17. Resonant leptogenesis
- 18. Spontaneous baryogenesis
- 19. Coherent baryogenesis
- 20. Gravitational baryogenesis
- 21. Defect mediated baryogenesis
- 22. Baryogenesis from long cosmic strings
- 23. Baryogenesis from short cosmic strings
- 24. Baryogenesis from collapsing loops

WX-ZHANG @HIGGS POTENTIAL, HEFEI

Shaposhnikov, DISCRETE 08, 11, Dec

Cosmic Energy Budget

Bayon asymmetry of the Universe

44 different ways to creat baryons in the Universe

25. Baryogenesis through collapse of vortons	37. Gra
26. Baryogenesis through axion domain walls	38. Rac
27. Baryogenesis through QCD domain walls	39. Bar
28. Baryogenesis through unstable domain walls	40. Bar
29. Baryogenesis from classical force	41. Bar
30. Baryogenesis from electrogenesis	42. Bar
31. B-ball baryogenesis	43. The
32. Baryogenesis from CPT breaking	44. Nor
33. Baryogenesis through quantum gravity	
34. Baryogenesis via neutrino oscillations	
35. Monopole baryogenesis	
36. Axino induced baryogenesis	

WX-ZHANG @HIGGS POTENTIAL, HEFEI

- avitino induced baryogenesis
- dion induced baryogenesis
- yogenesis in large extra dimensions
- yogenesis by brane collision
- yogenesis via density fluctuations
- yogenesis from hadronic jets
- ermal leptogenesis
- nthermal leptogenesis

Shaposhnikov, DISCRETE 08, 11, Dec

Cosmic Energy Budget

Electroweak Baryogenesis

WX-ZHANG @HIGGS POTENTIAL, HEFEI

- $\bullet\,$ Baryon number violating interactions. ${\ensuremath{\boxtimes}}$
- C and CP violation. \boxtimes
- $\bullet\,$ Departure from thermal equilibrium. $\boxtimes\,$

Electroweak Baryogenesis

WX-ZHANG @HIGGS POTENTIAL, HEFEI

- $\bullet\,$ Baryon number violating interactions. ${\ensuremath{\boxtimes}}$
- C and CP violation. \boxtimes
- Departure from thermal equilibrium. \boxtimes

WX-ZHANG @HIGGS POTENTIAL, HEFEI

- Baryon number violating interactions. \square
- C and CP violation. \boxtimes
- Departure from thermal equilibrium. \boxtimes

WX-ZHANG @HIGGS POTENTIAL, HEFEI

Sakharov conditions:

- Baryon number violating interactions. \square
- C and CP violation. \boxtimes
- Departure from thermal equilibrium. \boxtimes

 $\Gamma_{sph} \sim A_{sph}(T)e^{-E_{sph}(T)/T} > H$

WX-ZHANG @HIGGS POTENTIAL, HEFEI

- Baryon number violating interactions. \square
- C and CP violation. \boxtimes
- Departure from thermal equilibrium. \boxtimes

$$\Gamma_{sph} \sim A_{sph}(T)e^{-E_{sph}(T)/T} > H$$

WX-ZHANG @HIGGS POTENTIAL, HEFEI

- Baryon number violating interactions. \square
- C and CP violation. \boxtimes
- Departure from thermal equilibrium. \boxtimes

$$\begin{split} \Gamma_{sph} \sim A_{sph}(T) e^{-E_{sph}(T)/T} > H \\ \\ \\ S = \frac{n_B(\Delta t_W)}{n_B(0)} > e^{-X} \end{split}$$

WX-ZHANG @HIGGS POTENTIAL, HEFEI

- Baryon number violating interactions. \square
- C and CP violation. \boxtimes
- Departure from thermal equilibrium. \boxtimes

$$\Gamma_{sph} \sim A_{sph}(T)e^{-E_{sph}(T)/T} > H$$

$$S = \frac{n_B(\Delta t_W)}{n_B(0)} > e^{-X}$$

WX-ZHANG @HIGGS POTENTIAL, HEFEI

- Baryon number violating interactions. \square
- C and CP violation. \boxtimes
- Departure from thermal equilibrium. \boxtimes

SFOEWPT in BSM: Multi-step EWPT

 $V_0(H,S) = -\mu^2 (H^{\dagger}H) + \lambda (H^{\dagger}H)^2 + \frac{a_1}{2} (H^{\dagger}H)S + \frac{a_2}{2} (H^{\dagger}H)S^2$

 $+\frac{b_2}{2}S^2 + \frac{b_3}{3}S^3 + \frac{b_4}{4}S^4,$

SFOEWPT in BSM: Multi-step EWPT

 $V_0(H,S) = -\mu^2 (H^{\dagger}H) + \lambda (H^{\dagger}H)^2 + \frac{a_1}{2} (H^{\dagger}H)S + \frac{a_2}{2} (H^{\dagger}H)S^2$

 $+\frac{b_2}{2}S^2 + \frac{b_3}{3}S^3 + \frac{b_4}{4}S^4,$

EWPT in SM

SFOEWPT in BSM: Multi-step EWPT

 $V_0(H,S) = -\mu^2 (H^{\dagger}H) + \lambda (H^{\dagger}H)^2 + \frac{a_1}{2} (H^{\dagger}H)S + \frac{a_2}{2} (H^{\dagger}H)S^2$

WX-ZHANG @HIGGS POTENTIAL, HEFEI

<h>

1-step EWPT in BSM

$$\begin{split} H) &+ \frac{\lambda}{4} (H^{\dagger}H)^{2} + \frac{\delta_{2}}{2} H^{\dagger}H |S|^{2} \\ &+ \frac{d_{2}}{4} |S|^{4} \\ \frac{\rho_{1}}{4} S^{2} + h.c.. \end{split}$$

$$H) + \frac{\lambda}{4} (H^{\dagger}H)^{2} + \frac{\delta_{2}}{2} H^{\dagger}H|S|^{2} + \frac{d_{2}}{4} |S|^{4}$$

$$\frac{\partial_{1}}{4} S^{2} + h.c..$$

$$(s)$$

$$A$$

$$(s)$$

$$A$$

$$(s)$$

 $S = x_0 + s + iA$

 $S = x_0 + s + iA$

EWPT with a DM candidate: the cxSM $V_0(H,S) = \frac{\mu^2}{2} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H)^2 + \frac{\delta_2}{2} H^{\dagger}H|S|^2$ $+\frac{b_2}{2}|S|^2+\frac{d_2}{4}|S|^4$ *U*(1) $S = x_0 + s + iA$ $+a_1S + \frac{b_1}{A}S^2 + h.c..$ **Z**₂ $\langle s \rangle$ **U(1) SSB: MASSIVE PSEUDO-GOLDSTONE BOSON AVOID DOMAIN WALL PROBLEM**

EWPT STRENGTH

EWPT with a DM candidate: the cxSM $V_0(H,S) = \frac{\mu^2}{2} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H)^2 + \begin{bmatrix} \frac{\delta_2}{2} H^{\dagger}H |S|^2 \\ \frac{\delta_2}{2} H^{\dagger}H |S|^2 \end{bmatrix} \quad \mathcal{M}_h^2 \equiv \begin{pmatrix} M_{hh} & M_{hs} & M_{hA} \\ M_{sh} & M_{ss} & M_{sA} \\ M_{Ah} & M_{As} & M_{AA} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\lambda v_0^2 & \frac{\delta_2}{2} v_0 v_s & 0 \\ \frac{\delta_2}{2} v_0 v_s & \frac{1}{2} d_2 v_s^2 - \frac{\sqrt{2}a_1}{v_s} \\ 0 & 0 & -\frac{\sqrt{2}a_1}{v_s} - b_1 \end{pmatrix}$ $+\frac{b_2}{2}|S|^2+\frac{d_2}{4}|S|^4$ *U*(1) $S = x_0 + s + iA$ $+a_1S + \frac{b_1}{A}S^2 + h.c..$ **Z**₂ $\langle s \rangle$ **U(1) SSB: MASSIVE PSEUDO-GOLDSTONE BOSON AVOID DOMAIN WALL PROBLEM**

EWPT STRENGTH

EWPT with a DM candidate: the cxSM $V_0(H,S) = \frac{\mu^2}{2} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H)^2 + \left[\frac{\delta_2}{2} H^{\dagger}H|S|^2\right] \quad \mathcal{M}_h^2 = \begin{pmatrix} M_{hh} & M_{hs} & M_{hA} \\ M_{sh} & M_{ss} & M_{sA} \\ M_{Ah} & M_{As} & M_{AA} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\lambda v_0^2 & \begin{pmatrix} \frac{\delta_2}{2}v_0v_s & 0 \\ \frac{\delta_2}{2}v_0v_s & \frac{1}{2}d_2v_s^2 - \frac{\sqrt{2}a_1}{v_s} & 0 \\ 0 & 0 & -\frac{\sqrt{2}a_1}{v_s} - b_1 \end{pmatrix}$ $+\frac{b_2}{2}|S|^2 + \frac{d_2}{4}|S|^4$ *U*(1) $S = x_0 + s + iA$ $+a_1S + \frac{b_1}{A}S^2 + h.c..$ **Z**₂ $\langle s \rangle$ **U(1) SSB: MASSIVE PSEUDO-GOLDSTONE BOSON AVOID DOMAIN WALL PROBLEM**

EWPT STRENGTH

EWPT with a DM candidate: the cxSM MIXING & EWPT $V_0(H,S) = \frac{\mu^2}{2} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H)^2 + \begin{bmatrix} \frac{\delta_2}{2} H^{\dagger}H |S|^2 \\ 2 \end{bmatrix} \mathcal{M}_h^2 = \begin{pmatrix} M_{hh} & M_{hs} & M_{hA} \\ M_{sh} & M_{ss} & M_{sA} \\ M_{Ah} & M_{As} & M_{AA} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\lambda v_0^2 & \begin{pmatrix} \frac{\delta_2}{2}v_0v_s & 0 \\ \frac{\delta_2}{2}v_0v_s & \frac{1}{2}d_2v_s^2 - \frac{\sqrt{2}a_1}{v_s} & 0 \\ 0 & 0 & -\frac{\sqrt{2}a_1}{v_s} - b_1 \end{pmatrix}$ $+\frac{b_2}{2}|S|^2+\frac{d_2}{4}|S|^4$ *U*(1) $S = x_0 + s + iA$ $+a_1S + \frac{b_1}{A}S^2 + h.c.$ **Z**₂ $\langle s \rangle$ **U(1) SSB: MASSIVE PSEUDO-GOLDSTONE BOSON AVOID DOMAIN WALL PROBLEM**

EWPT STRENGTH

Experimental Constraints : EW Precision Observables & Higgs Measurement

Experimental Constraints : EW Precision Observables & Higgs Measurement

MIXING ANGLE & DM & HEAVY HIGGS MASS & EWPT & COLLIDER

WX-ZHANG @HIGGS POTENTIAL, HEFEI

 $\Delta \mathcal{O} = (\cos^2 \theta - 1)\mathcal{O}^{\mathrm{SM}}(m_{h_1}) + \sin^2 \theta \mathcal{O}^{\mathrm{SM}}(m_{h_2}) = \sin^2 \theta \left[\mathcal{O}^{\mathrm{SM}}(m_{h_2}) - \mathcal{O}^{\mathrm{SM}}(m_{h_1})\right]$

 $\Delta S = 0.086 \pm 0.077,$ $\Delta T = 0.177 \pm 0.070$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.89\\ 0.89 & 1 \end{pmatrix}.$$
$$\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$$

WX-ZHANG @HIGGS POTENTIAL, HEFEI

 $\Delta \mathcal{O} = (\cos^2 \theta - 1)\mathcal{O}^{\mathrm{SM}}(m_{h_1}) + \sin^2 \theta \mathcal{O}^{\mathrm{SM}}(m_{h_2}) = \sin^2 \theta \left[\mathcal{O}^{\mathrm{SM}}(m_{h_2}) - \mathcal{O}^{\mathrm{SM}}(m_{h_1})\right]$

 $\Delta S = 0.086 \pm 0.077,$ $\Delta T = 0.177 \pm 0.070$

 $\rho_{ij} = \begin{pmatrix} 1 & 0.89\\ 0.89 & 1 \end{pmatrix}.$

Two degree of freedom, 95% C.L

ATE FROM CDFII W-MASS MEASUREMENT

WX-ZHANG @HIGGS POTENTIAL, HEFEI

 $\Delta \mathcal{O} = (\cos^2 \theta - 1)\mathcal{O}^{\mathrm{SM}}(m_{h_1}) + \sin^2 \theta \mathcal{O}^{\mathrm{SM}}(m_{h_2}) = \sin^2 \theta \left[\mathcal{O}^{\mathrm{SM}}(m_{h_2}) - \mathcal{O}^{\mathrm{SM}}(m_{h_1})\right]$

 $\Delta S = 0.086 \pm 0.077,$ $\Delta T = 0.177 \pm 0.070$

 $\rho_{ij} = \begin{pmatrix} 1 & 0.89\\ 0.89 & 1 \end{pmatrix}.$

Two degree of freedom, 95% C.L

Small $m_{h_{\gamma}}$ with large mixing angle is favored !

CDFILW-MASS MEASUREMENT

WX-ZHANG @HIGGS POTENTIAL, HEFEI

 $\Delta \mathcal{O} = (\cos^2 \theta - 1)\mathcal{O}^{\mathrm{SM}}(m_{h_1}) + \sin^2 \theta \mathcal{O}^{\mathrm{SM}}(m_{h_2}) = \sin^2 \theta \left[\mathcal{O}^{\mathrm{SM}}(m_{h_2}) - \mathcal{O}^{\mathrm{SM}}(m_{h_1})\right]$

 $\Delta S = 0.086 \pm 0.077,$ $\Delta T = 0.177 \pm 0.070$

 $\rho_{ij} = \begin{pmatrix} 1 & 0.89 \\ 0.89 & 1 \end{pmatrix}.$

Two degree of freedom, 95% C.L

Small $m_{h_{\gamma}}$ with large mixing angle is favored !

FROM CDFII W-MASS MEASUREMENT

WX-ZHANG @HIGGS POTENTIAL, HEFEI

 $\Delta \mathcal{O} = (\cos^2 \theta - 1)\mathcal{O}^{\mathrm{SM}}(m_{h_1}) + \sin^2 \theta \mathcal{O}^{\mathrm{SM}}(m_{h_2}) = \sin^2 \theta \left[\mathcal{O}^{\mathrm{SM}}(m_{h_2}) - \mathcal{O}^{\mathrm{SM}}(m_{h_1})\right]$

 $\Delta S = 0.086 \pm 0.077,$ $\Delta T = 0.177 \pm 0.070$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.89\\ 0.89 & 1 \end{pmatrix}.$$

Two degree of freedom, 95% C.L.

Small $m_{h_{\gamma}}$ with large mixing angle is favored !

NSLATE FROM CDFII W-MASS MEASUREMENT

WX-ZHANG @HIGGS POTENTIAL, HEFEI

 $\Delta \mathcal{O} = (\cos^2 \theta - 1)\mathcal{O}^{\mathrm{SM}}(m_{h_1}) + \sin^2 \theta \mathcal{O}^{\mathrm{SM}}(m_{h_2}) = \sin^2 \theta \left[\mathcal{O}^{\mathrm{SM}}(m_{h_2}) - \mathcal{O}^{\mathrm{SM}}(m_{h_1})\right]$

 $\Delta S = 0.086 \pm 0.077,$ $\Delta T = 0.177 \pm 0.070$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.89\\ 0.89 & 1 \end{pmatrix}.$$

Two degree of freedom, 95% C.L.

$$\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$$

DOES THE W MASS MEASUREMENT EXCLUDE THE SINGLET HIGGS MODEL ?

Small m_{h_2} with large mixing angle is favored !

FROM CDFII W-MASS MEASUREMENT

WX-ZHANG @HIGGS POTENTIAL, HEFEI

 $\Delta \mathcal{O} = (\cos^2 \theta - 1)\mathcal{O}^{\mathrm{SM}}(m_{h_1}) + \sin^2 \theta \mathcal{O}^{\mathrm{SM}}(m_{h_2}) = \sin^2 \theta \left[\mathcal{O}^{\mathrm{SM}}(m_{h_2}) - \mathcal{O}^{\mathrm{SM}}(m_{h_1})\right]$

 $\Delta S = 0.086 \pm 0.077,$ $\Delta T = 0.177 \pm 0.070$

$$p_{ij} = \begin{pmatrix} 1 & 0.89\\ 0.89 & 1 \end{pmatrix}.$$

Two degree of freedom, 95% C.L

$$\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$$

MASS MEASUREMENT EXCLUDE THE SINGLET HIGGS MODEL ?

The answer is NO!!

This is not a UV complete model

Eur.Phys.J.C 78 (2018) 8

$$S - S_{SM} = 0.04 \pm 0.11$$

 $T - T_{SM} = 0.09 \pm 0.14$
 $U - U_{SM} = -0.02 \pm 0.11$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.92 & -0.68 \\ 0.92 & 1 & -0.87 \\ -0.68 & -0.87 & 1 \end{pmatrix}.$$

$$\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$$

Eur.Phys.J.C 78 (2018) 8

$$S - S_{SM} = 0.04 \pm 0.11$$

 $T - T_{SM} = 0.09 \pm 0.14$
 $U - U_{SM} = -0.02 \pm 0.11$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.92 & -0.68 \\ 0.92 & 1 & -0.87 \\ -0.68 & -0.87 & 1 \end{pmatrix}.$$

 $\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$

JHEP 01 (2024) 051, WX.Z, Y.Cai, M.J.Ramsey-Musolf, L.Zhang

Eur.Phys.J.C 78 (2018) 8

 $S - S_{SM} = 0.04 \pm 0.11$ $T - T_{SM} = 0.09 \pm 0.14$ $U - U_{SM} = -0.02 \pm 0.11$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.92 & -0.68 \\ 0.92 & 1 & -0.87 \\ -0.68 & -0.87 & 1 \end{pmatrix}.$$

 $\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$

New physics may induce deviation in Higgs couplings. Therefore it modifies the Higgs signal strength in Higgs measurement.

Production mod
$$\sum_{f} \mu_{i \to h_1 \to ff}$$

JHEP 01 (2024) 051, WX.Z, Y.Cai, M.J.Ramsey-Musolf, L.Zhang

WX-ZHANG @HIGGS POTENTIAL, HEFEI

le	$ggF+b\bar{b}H$	VBF	WH	ZH	$t \bar{t} \mathrm{H}$	$t \mathrm{H}$
	$1.03\substack{+0.07\\-0.07}$	$1.10\substack{+0.13\\-0.12}$	$1.16\substack{+0.23\\-0.22}$	$0.96\substack{+0.22\\-0.21}$	$0.74_{-0.24}^{+0.24}$	$6.61_{-3.76}^{+4.24}$

Nature 607, 52-59 (2022)

$$_{p \to h_1 \to XX} = \frac{\sigma_{pp \to h_1} BR(h_1 \to XX)}{\sigma_{pp \to h}^{SM} BR(h \to XX)_{SM}} \simeq \cos^2 \theta,$$

 $\chi^{2} = \sum_{i \neq f} \frac{(\mu_{i \to h_{1} \to f}^{xSM} - \mu_{i \to h_{1} \to f}^{obs})^{2}}{\sigma_{\mu_{i \to h \to f}}^{2}}, \quad \Delta \chi^{2} = \chi^{2} - \chi_{min}^{2} < 3.841. \rightarrow \text{For 1 DoF, 95\% C.L.}$

Eur.Phys.J.C 78 (2018) 8

 $S - S_{SM} = 0.04 \pm 0.11$ $T - T_{SM} = 0.09 \pm 0.14$ $U - U_{SM} = -0.02 \pm 0.11$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.92 & -0.68 \\ 0.92 & 1 & -0.87 \\ -0.68 & -0.87 & 1 \end{pmatrix}.$$

 $\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$

New physics may induce deviation in Higgs couplings. Therefore it modifies the Higgs signal strength in Higgs measurement.

Production mod
$$\sum_{f} \mu_{i \to h_1 \to ff}$$

JHEP 01 (2024) 051, WX.Z, Y.Cai, M.J.Ramsey-Musolf, L.Zhang

WX-ZHANG @HIGGS POTENTIAL, HEFEI

le	$ggF+b\bar{b}H$	VBF	WH	ZH	$t \bar{t} \mathrm{H}$	$t \mathrm{H}$
	$1.03\substack{+0.07\\-0.07}$	$1.10\substack{+0.13\\-0.12}$	$1.16\substack{+0.23\\-0.22}$	$0.96\substack{+0.22\\-0.21}$	$0.74_{-0.24}^{+0.24}$	$6.61_{-3.76}^{+4.24}$

Nature 607, 52-59 (2022)

$$_{p \to h_1 \to XX} = \frac{\sigma_{pp \to h_1} BR(h_1 \to XX)}{\sigma_{pp \to h}^{SM} BR(h \to XX)_{SM}} \simeq \cos^2 \theta,$$

 $\chi^{2} = \sum_{i \neq f} \frac{(\mu_{i \to h_{1} \to f}^{xSM} - \mu_{i \to h_{1} \to f}^{obs})^{2}}{\sigma_{\mu_{i \to h \to f}}^{2}}, \quad \Delta \chi^{2} = \chi^{2} - \chi_{min}^{2} < 3.841. \rightarrow \text{For 1 DoF, 95\% C.L.}$

Eur.Phys.J.C 78 (2018) 8

 $S - S_{SM} = 0.04 \pm 0.11$ $T - T_{SM} = 0.09 \pm 0.14$ $U - U_{SM} = -0.02 \pm 0.11$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.92 & -0.68 \\ 0.92 & 1 & -0.87 \\ -0.68 & -0.87 & 1 \end{pmatrix}.$$

 $\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$

New physics may induce deviation in Higgs couplings. Therefore it modifies the Higgs signal strength in Higgs measurement.

Production mod
$$\sum_{f} \mu_{i \to h_1 \to ff}$$

JHEP 01 (2024) 051, WX.Z, Y.Cai, M.J.Ramsey-Musolf, L.Zhang

WX-ZHANG @HIGGS POTENTIAL, HEFEI

le	$ggF+b\bar{b}H$	VBF	WH	ZH	$t \bar{t} \mathrm{H}$	$t \mathrm{H}$
	$1.03\substack{+0.07\\-0.07}$	$1.10^{+0.13}_{-0.12}$	$1.16\substack{+0.23\\-0.22}$	$0.96\substack{+0.22\\-0.21}$	$0.74_{-0.24}^{+0.24}$	$6.61_{-3.76}^{+4.24}$

Nature 607, 52-59 (2022)

$$_{p \to h_1 \to XX} = \frac{\sigma_{pp \to h_1} BR(h_1 \to XX)}{\sigma_{pp \to h}^{SM} BR(h \to XX)_{SM}} \simeq \cos^2 \theta,$$

 $\chi^{2} = \sum_{i \ f} \frac{(\mu_{i \to h_{1} \to f}^{xSM} - \mu_{i \to h_{1} \to f}^{obs})^{2}}{\sigma_{\mu_{i \to h \to f}}^{2}}, \quad \Delta \chi^{2} = \chi^{2} - \chi_{min}^{2} < 3.841. \rightarrow \text{For 1 DoF, 95\% C.L.}$

Eur.Phys.J.C 78 (2018) 8

 $S - S_{SM} = 0.04 \pm 0.11$ $T - T_{SM} = 0.09 \pm 0.14$ $U - U_{SM} = -0.02 \pm 0.11$

 $\rho_{ij} = \begin{pmatrix} 1 & 0.92 & -0.68 \\ 0.92 & 1 & -0.87 \\ -0.68 & -0.87 & 1 \end{pmatrix}.$

$$\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$$

Production mod
$$\sum_{f} \mu_{i \to h_1 \to ff}$$

JHEP 01 (2024) 051, WX.Z, Y.Cai, M.J.Ramsey-Musolf, L.Zhang

WX-ZHANG @HIGGS POTENTIAL, HEFEI

New physics may induce deviation in Higgs couplings. Therefore it modifies the Higgs signal strength in Higgs measurement.

le	$ggF+b\bar{b}H$	VBF	WH	ZH	$t \bar{t} \mathrm{H}$	$t \mathrm{H}$
	$1.03\substack{+0.07\\-0.07}$	$1.10^{+0.13}_{-0.12}$	$1.16\substack{+0.23\\-0.22}$	$0.96\substack{+0.22\\-0.21}$	$0.74_{-0.24}^{+0.24}$	$6.61_{-3.76}^{+4.24}$

Nature 607, 52-59 (2022)

$$_{p \to h_1 \to XX} = \frac{\sigma_{pp \to h_1} BR(h_1 \to XX)}{\sigma_{pp \to h}^{SM} BR(h \to XX)_{SM}} \simeq \cos^2 \theta,$$

 $\chi^{2} = \sum_{i=f} \frac{(\mu_{i \to h_{1} \to f}^{xSM} - \mu_{i \to h_{1} \to f}^{obs})^{2}}{\sigma_{\mu_{i \to h \to f}}^{2}}, \quad \Delta \chi^{2} = \chi^{2} - \chi_{min}^{2} < 3.841. \rightarrow \text{For 1 DoF, 95\% C.L.}$

Eur.Phys.J.C 78 (2018) 8

 $S - S_{SM} = 0.04 \pm 0.11$ $T - T_{SM} = 0.09 \pm 0.14$ $U - U_{SM} = -0.02 \pm 0.11$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.92 & -0.68 \\ 0.92 & 1 & -0.87 \\ -0.68 & -0.87 & 1 \end{pmatrix}.$$

$$\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$$

JHEP 01 (2024) 051, WX.Z, Y.Cai, M.J.Ramsey-Musolf, L.Zhang

WX-ZHANG @HIGGS POTENTIAL, HEFEI

New physics may induce deviation in Higgs couplings. Therefore it modifies the Higgs signal strength in Higgs measurement.

e	$ggF+b\bar{b}H$	VBF	WH	ZH	$t \bar{t} \mathrm{H}$	$t\mathrm{H}$
	$1.03\substack{+0.07\\-0.07}$	$1.10\substack{+0.13 \\ -0.12}$	$1.16\substack{+0.23\\-0.22}$	$0.96\substack{+0.22 \\ -0.21}$	$0.74_{-0.24}^{+0.24}$	$6.61_{-3.76}^{+4.24}$

Nature 607, 52-59 (2022)

$$\sigma_{p \to h_1 \to XX} = \frac{\sigma_{pp \to h_1} BR(h_1 \to XX)}{\sigma_{pp \to h}^{SM} BR(h \to XX)_{SM}} \simeq \cos^2 \theta,$$

 $\chi^{2} = \sum_{i=f} \frac{(\mu_{i \to h_{1} \to f}^{xSM} - \mu_{i \to h_{1} \to f}^{obs})^{2}}{\sigma_{\mu_{i \to h \to f}}^{2}}, \quad \Delta \chi^{2} = \chi^{2} - \chi_{min}^{2} < 3.841. \rightarrow \text{For 1 DoF, 95\% C.L.}$

This set $\|\sin\theta\| < 0.2$.

HIGGS MEASUREMENT AT THE LHC UTILIZES B-JET DECAY MODES MOSTLY. HIGGS DECAY TO LIGHT QUARKS WOULD IMPROVE THE HIGGS MEASUREMENT SIGNIFICANTLY

Eur.Phys.J.C 78 (2018) 8

 $S - S_{SM} = 0.04 \pm 0.11$ $T - T_{SM} = 0.09 \pm 0.14$ $U - U_{SM} = -0.02 \pm 0.11$

$$\rho_{ij} = \begin{pmatrix} 1 & 0.92 & -0.68 \\ 0.92 & 1 & -0.87 \\ -0.68 & -0.87 & 1 \end{pmatrix}.$$

$$\chi^2 = (X - \hat{X})_i (\sigma^2)_{ij}^{-1} (X - \hat{X})_j < 5.99$$

JHEP 01 (2024) 051, WX.Z, Y.Cai, M.J.Ramsey-Musolf, L.Zhang

WX-ZHANG @HIGGS POTENTIAL, HEFEI

New physics may induce deviation in Higgs couplings. Therefore it modifies the Higgs signal strength in Higgs measurement.

e	$ggF+b\bar{b}H$	VBF	WH	ZH	$t \bar{t} \mathrm{H}$	$t\mathrm{H}$
	$1.03\substack{+0.07\\-0.07}$	$1.10^{+0.13}_{-0.12}$	$1.16\substack{+0.23\\-0.22}$	$0.96\substack{+0.22 \\ -0.21}$	$0.74_{-0.24}^{+0.24}$	$6.61_{-3.76}^{+4.24}$

Nature 607, 52-59 (2022)

$$\sigma_{p \to h_1 \to XX} = \frac{\sigma_{pp \to h_1} BR(h_1 \to XX)}{\sigma_{pp \to h}^{SM} BR(h \to XX)_{SM}} \simeq \cos^2 \theta,$$

 $\chi^{2} = \sum_{i=f} \frac{(\mu_{i \to h_{1} \to f}^{xSM} - \mu_{i \to h_{1} \to f}^{obs})^{2}}{\sigma_{\mu_{i \to h \to f}}^{2}}, \quad \Delta \chi^{2} = \chi^{2} - \chi_{min}^{2} < 3.841. \rightarrow \text{For 1 DoF, 95\% C.L.}$

This set $\|\sin\theta\| < 0.2$.

HIGGS MEASUREMENT AT THE LHC UTILIZES B-JET DECAY MODES MOSTLY. HIGGS DECAY TO LIGHT QUARKS WOULD IMPROVE THE HIGGS MEASUREMENT SIGNIFICANTLY

OPPORTUNITIES AT FUTURE COLLIDERS!!!

TAKE-AWAY MESSAGE:

On one hand, enough strong first order EWPT needs considerable new physics contribution. On the other hand, too big new physics couping leads to deviation from experiment observation.

TAKE-AWAY MESSAGE:

On one hand, enough strong first order EWPT needs considerable new physics contribution. On the other hand, too big new physics couping leads to deviation from experiment observation.

The viable SFOEWPT model is possible to be fully tested in the current and future colliders

TAKE-AWAY MESSAGE:

On one hand, enough strong first order EWPT needs considerable new physics contribution. On the other hand, too big new physics couping leads to deviation from experiment observation.

Exotic Higgs Decay at CEPC : $H \rightarrow SS$

WX-ZHANG @HIGGS POTENTIAL, HEFEI

The viable SFOEWPT model is possible to be fully tested in the current and future colliders

TAKE-AWAY MESSAGE:

On one hand, enough strong first order EWPT needs considerable new physics contribution. On the other hand, too big new physics couping leads to deviation from experiment observation.

CEPC tests the lower mass region.

WX-ZHANG @HIGGS POTENTIAL, HEFEI

The viable SFOEWPT model is possible to be fully tested in the current and future colliders

TAKE-AWAY MESSAGE:

On one hand, enough strong first order EWPT needs considerable new physics contribution. On the other hand, too big new physics couping leads to deviation from experiment observation.

The viable SFOEWPT model is possible to be fully tested in the current and future colliders

CEPC tests the lower mass region.

TAKE-AWAY MESSAGE:

On one hand, enough strong first order EWPT needs considerable new physics contribution. On the other hand, too big new physics couping leads to deviation from experiment observation.

The viable SFOEWPT model is possible to be fully tested in the current and future colliders

TAKE-AWAY MESSAGE:

On one hand, enough strong first order EWPT needs considerable new physics contribution. On the other hand, too big new physics couping leads to deviation from experiment observation.

The viable SFOEWPT model is possible to be fully tested in the current and future colliders

WX-ZHANG @HIGGS POTENTIAL, HEFEI

For both CEPC and the LHC, multiple channels are investigated. We must ask: Has the information from these detection channels been fully utilized?

TAKE-AWAY MESSAGE:

On one hand, enough strong first order EWPT needs considerable new physics contribution. On the other hand, too big new physics couping leads to deviation from experiment observation.

The viable SFOEWPT model is possible to be fully tested in the current and future colliders

WX-ZHANG @HIGGS POTENTIAL, HEFEI

For both CEPC and the LHC, multiple channels are investigated. We must ask: Has the information from these detection channels been fully utilized?

IF NOT, **HOW CAN THESE DETECTION CHANNELS TO BE OPTIMIZED?**

TAKE-AWAY MESSAGE:

On one hand, enough strong first order EWPT needs considerable new physics contribution. On the other hand, too big new physics couping leads to deviation from experiment observation.

The viable SFOEWPT model is possible to be fully tested in the current and future colliders

WX-ZHANG @HIGGS POTENTIAL, HEFEI

For both CEPC and the LHC, multiple channels are investigated. We must ask: Has the information from these detection channels been fully utilized?

IF NOT, **HOW CAN THESE DETECTION CHANNELS TO BE OPTIMIZED?**

Two answers are included in this talk

Optimizing detecting PT ability at colliders : Combine $b\bar{b}\gamma\gamma$ and $ZZ \rightarrow 4\ell$

Space between the blue and the purple line can be detected now !

Detect the DM phenomenology and SFOEWPT at colliders

$$V_0(H,S) = \frac{\mu^2}{2} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H) + \frac{h_1}{4} S^2 + h_2 ($$

Nonzero coupling g_{1AA} would induce Higgs invisible decay if $m_A < \frac{m_{h_1}}{2}$

$$g_{1AA} = \frac{\sqrt{2}a_1 + m_{h_1}^2 v_s}{2v_s^2} \sin\theta,$$

 $(H^{\dagger}H)^{2} + \frac{\delta_{2}}{2}H^{\dagger}H|S|^{2} + \frac{b_{2}}{2}|S|^{2} + \frac{d_{2}}{4}|S|^{4}$

c..

Detect the DM phenomenology and SFOEWPT at colliders

$$V_0(H,S) = \frac{\mu^2}{2} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H) + \frac{h_1}{4} S^2 + h_2 S^2$$

Nonzero coupling g_{1AA} would induce Higgs invisible decay if $m_A < \frac{m_{h_1}}{2}$

$$g_{1AA} = \frac{\sqrt{2}a_1 + m_{h_1}^2 v_s}{2v_s^2} \sin \theta,$$

The decay width is $\Gamma_{h_1 \to AA} \sim \sqrt{1 - \frac{4m_A^2}{m_{h_1}^2}} \times \left(\frac{\sin\theta}{0.1}\right)^2 \times 50 \text{ [MeV]}$

 $\Gamma_{H \to inv}^{SM} \lesssim 4.1 \ \mathrm{MeV} \times 13\% \simeq 0.4 \ \mathrm{MeV}$

 $(H^{\dagger}H)^{2} + \frac{\delta_{2}}{2}H^{\dagger}H|S|^{2} + \frac{b_{2}}{2}|S|^{2} + \frac{d_{2}}{4}|S|^{4}$

c..

Detect the DM phenomenology and SFOEWPT at colliders

$$V_0(H,S) = \frac{\mu^2}{2} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H) + \frac{h_1}{4} S^2 + h_2 S^2$$

Nonzero coupling g_{1AA} would induce Higgs invisible decay if $m_A < \frac{m_{h_1}}{2}$

$$g_{1AA} = \frac{\sqrt{2}a_1 + m_{h_1}^2 v_s}{2v_s^2} \sin \theta,$$

The decay width is $\Gamma_{h_1 \to AA} \sim \sqrt{1 - \frac{4m_A^2}{m_{h_1}^2}} \times \left(\frac{\sin\theta}{0.1}\right)^2 \times 50 \text{ [MeV]}$

 $\Gamma_{H \to inv}^{SM} \lesssim 4.1 \ \mathrm{MeV} \times 13\% \simeq 0.4 \ \mathrm{MeV}$

Thus it is safe to set the DM mass with $m_A \ge 62.5$ GeV

 $m_A > 62.5$ GeV: Recently-studied case

 $m_A = 62.5$ GeV: Well-studied case

 $(H^{\dagger}H)^{2} + \frac{\delta_{2}}{2}H^{\dagger}H|S|^{2} + \frac{b_{2}}{2}|S|^{2} + \frac{d_{2}}{4}|S|^{4}$

С..

$$V_0(H,S) = \frac{\mu^2}{2} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H) + \frac{\lambda}{4} (H^{\dagger}H) + \frac{h_1}{4} S^2 + h_2 S^2$$

Nonzero coupling g_{1AA} would induce Higgs invisible decay if $m_A < \frac{m_{h_1}}{2}$

$$g_{1AA} = \frac{\sqrt{2}a_1 + m_{h_1}^2 v_s}{2v_s^2} \sin \theta,$$

The decay width is $\Gamma_{h_1 \to AA} \sim \sqrt{1 - \frac{4m_A^2}{m_{h_1}^2}} \times \left(\frac{\sin\theta}{0.1}\right)^2 \times 50 \text{ [MeV]}$

 $\Gamma_{H \to inv}^{SM} \lesssim 4.1 \ \mathrm{MeV} \times 13\% \simeq 0.4 \ \mathrm{MeV}$

Thus it is safe to set the DM mass with $m_A \ge 62.5$ GeV

 $m_A > 62.5$ GeV: Recently-studied case

 $m_A = 62.5$ GeV: Well-studied case

cxSM: search EWPT & DM at the (HL-)LHC

cxSM: search for bb + MET at the (HL-)LHC

Detectable region by singlet search only, including di-boson and di-higgs channels

Space that can only be detected by $bar{b}+{\sf MET}$

- We briefly see how the Higgs measurement impact on the EWPT searches at colliders, which gives an opportunity to the future collider—CEPC. ML method is expected to optimize the preselection step.
- Two methods are introduced to optimize the heavy Higgs search for EWPT. One is to combine di-Higgs and di-boson channels, the other is to make use the branching new search channel $b\bar{b}$ + MET.
- Without updating LHC hardware, detectable parameter space are extended by the first method. DM is very hopefully to be discovered by the future Xenon-nT or PandaX-4T.

