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Which Higgs Potential? 
&  

Which Standard Model Gauge Group?

We don’t know



• Experimentally, we need to measure the Higgs self coupling to 
distinguish them

Which Higgs potential?
• Higgs potential can be different in various BSM scenarios



Which Higgs potential?

If new physics has decoupling nature, such as the Landau-
Ginzburg or Nambu-Goldstone Higgs boson, the self coupling is 
close to the SM value. 

Otherwise, if new physics is non-decoupling, the deviation from 
SM is significant, the ratio of self coupling w.r.t. the SM value is 
close to 5/3 for Coleman-Weinberg and nearly zero for tadpole 
Higgs boson. 



Which SM gauge group?



Generalized global symmetries

• The global symmetries in QFT are defined as topological operators.  

• In this view, people found many generalizations and new 
applications of global symmetries, mainly in hep-th and condensed 
matter communities.  

• How do we use it in particle physics?



Unification of two perspectives

heavy 
particles

SMEFT
line 
operators

SM gauge 
group

Particle physicists’ 
viewpoint: 

SM as an EFT and 
reductionism

Viewpoint of 
generalized 
symmetry: 

Given the Lie algebra, 
there can be different 
Lie groups.  

Gauge theories based 
on those Lie groups 
are considered as 
different theories, 
since they are 
distinguished by one-
form symmetries 
acting on line 
operators.

heavy particles (with infinite masses) = Wilson/’t Hooft line operators



Toy Model



• They are sometimes use interchangeably 

• But we have to keep in mind they are not exactly the same, namely 

, where  is the center 

• The consequence of the  quotient:                                                               

 only has integer spin representations,                                                  

 can have both half-integer and integer spin representations 

• In general, one can define , where  is a subgroup of the center 

and all the allowed reps. are invariant under the  group

SO(3) ∼
SU(2)

ℤ2
ℤ2 = (eiπ, e2πi = 1)

ℤ2

SO(3)

SU(2)

G ∼
G̃
H

H

H

Example: SU(2) versus SO(3) groups

[Aharony, Seiberg, Tachikawa, 13]
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• Consider a low-energy theory with all the matter fields (including gauge bosons and 
Dirac fermions) in the adjoint representation of . Suppose this is what has been 
discovered experimentally.  

• The gauge group appears to be . But this is not quite true. 

• Instead, the gauge group can be either  or  

• In fancier language, the gauge group , where                                   

(The difference of the two theories can be rephrased in one-form symmetry.) 

• When it’s , since  acts trivially in the full theory, this implies all the heavy 
particles have to be in the integer spin representations. 

• Distinguishing  vs.  requires to discover at least one heavy particle in the 
half-integer spin representation.  

• Coming back to low-energy EFT, heavy particle can be described by high dim. 
operators

SU(2)

SU(2)

SU(2) SO(3)

G =
SU(2)

Γ
Γ = 1, ℤ2

SO(3) Γ = ℤ2

SU(2) SO(3)

Example: SU(2) versus SO(3) gauge theories



• Consider a low-energy theory with all the matter fields (including gauge bosons and 
Dirac fermions) in the adjoint representation of . Suppose this is what has been 
discovered experimentally.  

• The gauge group appears to be . But this is not quite true. 

• Instead, the gauge group can be either  or  

• In fancier language, the gauge group , where                                   

(The difference of the two theories can be rephrased in one-form symmetry.) 

• When it’s , since  acts trivially in the full theory, this implies all the heavy 
particles have to be in the integer spin representations. 

• Distinguishing  vs.  requires to discover at least one heavy particle in the 
half-integer spin representation.  

• Coming back to low-energy EFT, heavy particle can be described by high dim. 
operators

SU(2)

SU(2)

SU(2) SO(3)

G =
SU(2)

Γ
Γ = 1, ℤ2

SO(3) Γ = ℤ2

SU(2) SO(3)

Example: SU(2) versus SO(3) gauge theories



• Consider a low-energy theory with all the matter fields (including gauge bosons and 
Dirac fermions) in the adjoint representation of . Suppose this is what has been 
discovered experimentally.  

• The gauge group appears to be . But this is not quite true. 

• Instead, the gauge group can be either  or  

• In fancier language, the gauge group , where                                   

(The difference of the two theories can be rephrased in one-form symmetry.) 

• When it’s , since  acts trivially in the full theory, this implies all the heavy 
particles have to be in the integer spin representations. 

• Distinguishing  vs.  requires to discover at least one heavy particle in the 
half-integer spin representation.  

• Coming back to low-energy EFT, heavy particle can be described by high dim. 
operators

SU(2)

SU(2)

SU(2) SO(3)

G =
SU(2)

Γ
Γ = 1, ℤ2

SO(3) Γ = ℤ2

SU(2) SO(3)

Example: SU(2) versus SO(3) gauge theories



• Consider a low-energy theory with all the matter fields (including gauge bosons and 
Dirac fermions) in the adjoint representation of . Suppose this is what has been 
discovered experimentally.  

• The gauge group appears to be . But this is not quite true. 

• Instead, the gauge group can be either  or  

• In fancier language, the gauge group , where                                   

(The difference of the two theories can be rephrased in one-form symmetry.) 

• When it’s , since  acts trivially in the full theory, this implies all the heavy 
particles have to be in the integer spin representations. 

• Distinguishing  vs.  requires to discover at least one heavy particle in the 
half-integer spin representation.  

• Coming back to low-energy EFT, heavy particle can be described by high dim. 
operators

SU(2)

SU(2)

SU(2) SO(3)

G =
SU(2)

Γ
Γ = 1, ℤ2

SO(3) Γ = ℤ2

SU(2) SO(3)

Example: SU(2) versus SO(3) gauge theories



• Consider a low-energy theory with all the matter fields (including gauge bosons and 
Dirac fermions) in the adjoint representation of . Suppose this is what has been 
discovered experimentally.  

• The gauge group appears to be . But this is not quite true. 

• Instead, the gauge group can be either  or  

• In fancier language, the gauge group , where                                   

(The difference of the two theories can be rephrased in one-form symmetry.) 

• When it’s , since  acts trivially in the full theory, this implies all the heavy 
particles have to be in the integer spin representations. 

• Distinguishing  vs.  requires to discover at least one heavy particle in the 
half-integer spin representation.  

• Coming back to low-energy, heavy particle can be described by high dim. operators in 
EFT

SU(2)

SU(2)

SU(2) SO(3)

G =
SU(2)

Γ
Γ = 1, ℤ2

SO(3) Γ = ℤ2

SU(2) SO(3)

Example: SU(2) versus SO(3) gauge theories



• Consider a low-energy theory with all the matter fields (including gauge bosons and 
Dirac fermions) in the adjoint representation of . Suppose this is what has been 
discovered experimentally.  

• The gauge group appears to be . But this is not quite true. 

• Instead, the gauge group can be either  or  

• In fancier language, the gauge group , where                                   

(The difference of the two theories can be rephrased in one-form symmetry.) 

• When it’s , since  acts trivially in the full theory, this implies all the heavy 
particles have to be in the integer spin representations. 

• Distinguishing  vs.  requires to discover at least one heavy particle in the 
half-integer spin representation.  

• Coming back to low-energy, heavy particle can be described by high dim. operators in 
EFT (if there is decoupling limit).

SU(2)

SU(2)

SU(2) SO(3)

G =
SU(2)

Γ
Γ = 1, ℤ2

SO(3) Γ = ℤ2

SU(2) SO(3)

Example: SU(2) versus SO(3) gauge theories



The Standard Model



• The matter content (+ gauge fields in the adjoints)

SM particle content

• The  appears to be the gauge group, naivelyG̃ = SU(3)c × SU(2)L × U(1)Y

• Nonetheless, much like the  in the toy model, we are not sure this is the genuine 
gauge group. To find the genuine gauge group, we need to take a quotient to remove the 
trivial group elements.

SU(2)

[M. Schwartz QFT & SM textbook]



• The ambiguity comes from the following  group acting trivially on 
all SM fields. (This is analogous to the  center in the toy model.)

ℤ6
ℤ2

Which SM gauge group?

[… O’Raifeartaigh, 86; … Tong, 17; …]

ℤ6 = {α, α2, α3, α4, α5, α6 = 1}

• The generator  act on a rep.  asα (R3, R2, QY)

Uα(R3, R2, QY) = e
2πi
3 𝒩(R3)+iπ𝒩(R2)+ 2πi

6 (6QY) = e2πi( 𝒩(R3)
3 + 𝒩(R2)

2 + QY)

• Hence the condition for the  group acting trivially isℤ6

𝒩(R3) = 6QY mod 3 and 𝒩(R2) = 6QY mod 2

• All SM fields are invariant under the  group (check it!)ℤ6
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• There are four choices, differing by the global structure of the gauge 
group (or one-form global symmetry):

Which SM gauge group?

G =
G̃
Γ

=
SU(3)c × SU(2)L × U(1)Y

Γ
Γ = ℤ6, ℤ3, ℤ2, 1

• To pin down which one is realized in nature, we need to discover 
new particles which are not invariant under  (which we call “  
exotic particles”) in experiments. 

ℤ6 ℤ6



• All particles are invariant under ,  remains undetermined as in the SM. However, 
if this is the case it might be better to write . 

ℤ6 Γ
GSM = SU(3)c × SU(2)L × U(1)Y /ℤ6

• At least one heavy particle is not invariant under  but invariant under  
(hence not invariant under ),  can be either  or . 

ℤ3 ℤ2
ℤ6 Γ ℤ2 1

• Q: What is the SM gauge group? 

• A: We need to discover new heavy particles. There are four scenarios 
as follows:

• At least one heavy particle is not invariant under  but invariant under  
(hence not invariant under ),  can be either  or . 

ℤ2 ℤ3
ℤ6 Γ ℤ3 1

• At least one heavy particle is invariant under neither  nor  (hence not 
invariant under ),  is uniquely determined to be . 

ℤ2 ℤ3
ℤ6 Γ 1

[See in the backup slides and hep-ph/2404.04229 for concrete examples]



Conclusions
• We don’t know about either the microscopic nature of EWSB 

(hence the shape of the Higgs potential) or the SM gauge group 

• Future collider experiments are highly desirable to understand 
these questions better

— We must measure the Higgs self coupling

— If we are lucky, we might discover new particles not 
invariant under the  group  

(In the paper we discuss from the SMEFT perspective, so 
indirect signatures can also be interesting)

ℤ6



Backups



•  = (fundamental, fundamental, ) is allowed when 
 but forbidden when  

•  = (fundamental, fundamental, ) is allowed when 
 or , but forbidden when  or  

•  = (fundamental, fundamental, ) is allowed when 
 or , but forbidden when  or 

(R3, R2, QY) 0
Γ = 1 Γ = ℤ2,3,6

(R3, R2, QY) 2/3
Γ = 1 ℤ3 Γ = ℤ2 ℤ6

(R3, R2, QY) 1/2
Γ = 1 ℤ2 Γ = ℤ3 ℤ6

Examples of heavy particles & SM gauge group



• One can use SMEFT 

• We showed they never appear in tree-level ultraviolet 
completions, see hep-ph/2404.04229 

• One-loop dictionary between heavy particles and SMEFT 
operators becomes highly desirable.  

• Interesting phenomenological implications, in particular an 
upper bound for reheating temperature.   

• Systematic studies on future colliders warranted 

Decoupling heavy  exoticsℤ6



• Q: What about the scalars that can trigger EWSB? 

• A: They don’t decouple and they are not  exotics. 

• Proof: 1) Since color is unbroken, the scalars must be neutral 
under  (i.e. singlet rep. has N-ality zero). 2) In the notation 
of  the quantum numbers are subject to the following 
constraints to accommodate a electric neutral component:

ℤ6

SU(3)c
( j, QY)

•  is either integer or half-integer since  is, henceQY j

invariant under ℤ3

• Furthermore, let’s compute 2j − 6QY

invariant under ℤ2

• Invariance under both  implies invariance under ℤ2,3 ℤ6

Non-decoupling scalars for EWSB



• Free Maxwell theory with no matter:                                                  
the Gauss law is understood as electric  1-form symmetry 

• Pure  gauge theory with no matter:                                        
the center of the gauge group measures the N-ality of a Wilson 
line, which is understood as electric  1-form symmetry 

• Adding matter fields breaks the electric 1-form symmetry 
explicitly, i.e. Wilson lines can be screened/trivialized by particles.

U(1)

SU(N)

ZN

Higher-form symmetries

• Nevertheless, the notions of electric 1-form symmetry and Wilson lines are 
still valid below the mass scale of the heavy particles that screen the Wilson 
lines. As such, the 1-form symmetry is viewed as accidental at low energy.



• A p-form global symmetry is generated by a dimension  dimensional 
topological operator  acting on a  dimensional charged operator  as 
in the following:

(d − p − 1)
Dd−p−1 p 𝒪p

One-form symmetries and Line Operators
[ ICTP lectures by Schafer-Nameki, 2023 ]

• Higher form symmetries (i.e. ) are abelian.p > 1

• Screening the charge: p-form symmetry can be screened (trivialized) by  
dimensional operators  which live at the end of 

p − 1
𝒪p−1 𝒪p



• One useful perspective is to think in terms of the equivalence relations 
between charged operators  𝒪p

One-form symmetries and Line Operators
[ ICTP lectures by Schafer-Nameki, 2023 ]

• Example: in a pure Yang-Mill theory with simply-connected gauge group , 
Wilson lines of all possible charges under the center  are allowed. Since the 
only local operators are in the adjoint which is not charged under center, all 
these  charged Wilson lines are inequivalent and so the 1-form symmetry is 
the center. Also it’s obvious that adding additional matter can trivialize some of 
the Wilson lines, hence breaking the 1-form symmetry to a subgroup.

G
ℤG

ℤG

• Taking the quotient  restricts the allowed Wilson lines, but it allows for more              
’t Hooft lines. There are different ways of adding the lines (called choices of 
“polarizations”). 

Γ



[ ICTP lectures by Schafer-Nameki, 2023 ]

Centers for simply-connected groups


