





# Non-resonant HH→bbγγ analysis with the ATLAS detector

Sijing Zhang

Higgs Potential 2024 21 December 2024, Hefei



## Why Di-Higgs?

- Higgs pair production:
  - Fundamental test of the SM direct access to Higgs self-coupling
  - Route to search for **BSM** 
    - New physics could affect the Higgs self-coupling ( $\lambda$ ), and greatly impact the HH cross-section
  - An observed value of these coupling modifiers significantly different from unity would provide a proof of non-SM Higgs boson interactions





# HH→bbγγ

- HH→bbγγ:
  - Excellent trigger, reconstruction efficiency for photons at ATLAS.
     Excellent di-photon invariant mass resolution (1-2 GeV). Very
     clean final state
  - O High H→bb branching ratio (59%) but challenging QCD environment
- Published analyses with Run2 data:
  - Full Run 2: [*Phys. Rev. D 106, 052001*]
  - <u>Legacy Run 2</u>: [JHEP01(2024)066]
- Three physics signatures:
  - HH (Signal)
  - **H (Resonant background)**
  - Continuum background

|    | bb    | WW    | ττ     | ZZ     | γγ      |
|----|-------|-------|--------|--------|---------|
| bb | 33%   |       |        |        |         |
| WW | 25%   | 4.6%  |        |        |         |
| ττ | 7.4%  | 2.5%  | 0.39%  |        |         |
| ZZ | 3.1%  | 1.2%  | 0.34%  | 0.076% |         |
| γγ | 0.26% | 0.10% | 0.029% | 0.013% | 0.0005% |



# Strategy

- Excellent di-photon mass resolution allows for signal extraction in  $m_{\gamma\gamma}$
- s/b in signal region after pre-selection is  $\sim 0.1\%$



• Split signal regions by  $m^*_{bb\gamma\gamma}$  for sensitivity to SM and BSM HH.

 $m_{bb\gamma\gamma}^* = m_{bb\gamma\gamma} - (m_{bb} - 125 \text{ GeV}) - (m_{\gamma\gamma} - 125 \text{ GeV})$ 

- Train 2 BDTs to target each signal region.
  - Low mass: 4 categories
  - High mass: 3 categories



#### **Signal Extraction**

- Signal modeling
  - **Double-Sided Crystal Ball** Normalization and shape for HH signal and single Higgs background models determined from fits to Monte Carlo simulation.
- Background modeling
  - **Likelihood function** Shape chosen by fitting Monte Carlo simulation. Nomalized to the data sidebands where  $m_{\gamma\gamma}$  is between 105-120 & 130-160 GeV
- **Spurious signal tests** performed to estimate bias introduced by choice of functional form.
- HH signal strength determined through maximum likelihood fit on  $m_{\gamma\gamma}$  across all the BDT categories



#### Systematic uncertainties

- Systematic uncertainties affect the **shape and normalisation of the diphoton invariant mass distributions** of the Higgs boson pair signal and single Higgs boson backgrounds
  - Computed separately for the ggF and VBF HH production modes and for single Higgs boson production modes
- The impact of the systematic uncertainties is small compared with that of the statistical uncertainties
  - Due to the limited number of events and small signal-to-background ratio
- **Dominant systematic uncertainties** in the expected  $\mu_{HH}$  upper limit at 95% CL.

| Systematic uncertainty source           | Relative impact $[\%]$ |
|-----------------------------------------|------------------------|
| Experimental                            |                        |
| Photon energy resolution                | 0.4                    |
| Photon energy scale                     | 0.1                    |
| Flavour tagging                         | 0.1                    |
| Theoretical                             |                        |
| Factorisation and renormalisation scale | 4.8                    |
| ${\cal B}(H	o \gamma\gamma, bar b)$     | 0.2                    |
| Parton showering model                  | 0.2                    |
| Heavy-flavour content                   | 0.1                    |
| Background model (spurious signal)      | 0.1                    |

#### Results

- No significant excess over the expected background was observed
- A 95% CL upper limit of 4.0 on the total HH production signal strength  $\mu_{HH}$  is set

| Statistial | Upper limit | 95% CL κ <sub>λ</sub> | 95% CL <sub>K<sub>2V</sub></sub> |
|------------|-------------|-----------------------|----------------------------------|
| results    |             | constraint            | constraint                       |
| LegacyRun2 | 4.0         | [-1.4, 6.9]           | [-0.5, 2.7]                      |





#### **EFT inplementation: HEFT**

- **HEFT** (Higgs Effective Field Theory)
  - Includes five couplings: c<sub>hhh</sub>, c<sub>tth</sub>, c<sub>ggh</sub>, c<sub>gghh</sub>, c<sub>tthh</sub>. In SM, values are: (1, 1, 0, 0, 0)



- Different parameterization used w.r.t  $\kappa_{\lambda}$  and  $\kappa_{2V}$  results
  - HEFT results: Use ratio of theory cross-sections between SM point only and point of interest in a given  $m_{HH}$  bin (weight for each bin)
- Results consider uncertainties from reweighting, theory and PS.



8

#### **EFT inplementation: HEFT**

- HEFT benchmark points (7) describe representative signal kinematics and  $m_{HH}$  shape features
  - Have sensitivities that can vary significantly between one point and another
- The resulting upper limits on the Higgs boson pair production cross-section through gluon-gluon fusion
  - Benchmark points 3, 5 and 7: sets upper limits similar to those set by the search for  $HH \rightarrow 4b$  events
  - The remaining benchmarks: have updated definitions compared to those in the  $HH \rightarrow 4b$  search
    - Can not be directly compared

| Benchmark     | $c_{hhh}$ | $c_{tth}$ | $c_{ggh}$ | $c_{gghh}$ | $c_{tthh}$ |
|---------------|-----------|-----------|-----------|------------|------------|
| $\mathbf{SM}$ | 1.00      | 1.00      | 0         | 0          | 0          |
| 1             | 5.11      | 1.10      | 0         | 0          | 0          |
| 2             | 6.84      | 1.03      | -1/3      | 0          | 1/6        |
| 3             | 2.21      | 1.05      | 1/2       | 1/2        | -1/3       |
| 4             | 2.79      | 0.90      | -1/3      | -1/2       | -1/6       |
| 5             | 3.95      | 1.17      | 1/6       | -1/2       | -1/3       |
| 6             | -0.68     | 0.90      | 1/2       | 1/4        | -1/6       |
| 7             | -0.10     | 0.94      | 1/6       | -1/6       | 1          |



# **EFT inplementation: SMEFT**

- SMEFT (Standard Model Effective Field Theory)
  - Expansion of the SM Lagrangian with operators of dimension 6
  - Assumes an EW doublet for Higgs (HEFT assumes EW gauge singlet)
  - Includes 5 Wilson coefficients:
    - $\circ$   $C_H$  ,  $C_{HG}$ ,  $C_{tH}$ ,  $C_{tG}$ ,  $C_{H\square}$
    - Some Wilson coefficients introduce dependencies, e.g. with
       H production (which does not happen in HEFT)
      - $\circ$  Need to model these properly
  - Strategy:
    - Estimate effects on HH cross section for variation of SMEFT parameters, and effects on uncertainties, to compute upper limits and likelihoods on different signal hypotheses
  - Additional points
    - Have both linear and quadratic terms in matrix element to consider
    - Trying to reweight from LO to NLO for more accurate results
    - Actively deriving **uncertainties** on the **signal** and the **background**

| Wilson coefficient | 95% CL Observed   | 95% CL Expected            |
|--------------------|-------------------|----------------------------|
| $c_H$              | $[-14.4, \ 6.2]$  | $[-16.8, \ 9.7]$           |
| $c_{H_{\square}}$  | $[- \ 9.4, 10.2]$ | $\left[-12.4, 13.7\right]$ |



#### Conclusions

- Performed the legacy ATLAS Run 2 results of non-resonant
   HH→bbγγ analysis
  - No significant excess above the expected background was observed
- Looking forward for the Run 2 + (Partial) Run 3 results

# Backup

#### **Pre-selection**

- A combination of di-photon and single-photon triggers are used to maximize the efficiency.
  - 2015+2016: HTL\_g35\_loose\_g25\_loose
  - 2017+2018: HLT\_g35\_medium\_g25\_medium\_L12EM20VH
    - Require two loose or medium photons with (sub-)leading  $p_T > 35(25)$  GeV.
- 2015: HLT\_g120\_loose
- 2016+2017+2018: HLT\_g140\_loose

Require one loose photon with  $p_T > 120 \text{ or } 140 \text{ GeV.}$ 

- More relevant for  $H \rightarrow \gamma \gamma$  decays with highly boosted Higgs bosons, where the two photons cannot be resolved!
- **Pre-selection** requirements targeting the **signature** define the **signal region** of our analysis! •





- Two tight and isolated photons.
- (Sub-)Leading  $p_T/m_{\gamma\gamma} > 0.35(0.25)$ .
- Di-photon invariant mass window  $105 < m_{\gamma\gamma} < 160$  GeV.
- Exactly two b-jets passing the 77% efficiency WP for the DL1r b-tagging algorithm.



This allows to preserve orthogonality with the  $HH \rightarrow bbbb$  analysis!

- The b-jets candidates are selected by ranking them by their b-tagging quantile they pass and tie breaking by  $p_T$ .
- The  $\mu$ -in-jet+PtReco (i.e. the BJetCalibration) *b***-jet energy correction** is applied!
  - The resolution on  $m_{b\bar{b}}$  for signal events improves of a factor of 22%!

#### **BDT training**

- Input variables
  - $p_T/m_{\gamma\gamma}$ ,  $\eta$ ,  $\phi$  of the 2 photons.
  - $p_T / m_{\gamma\gamma}$ ,  $\eta$ ,  $\phi$ , *b*-tag quantile of the 2 *b*-jets.
  - $p_T^{bb}$ ,  $\eta^{bb}$ ,  $\phi^{bb}$  and  $m_{bb}$ .
  - $H_T$  and single-topness  $\chi_{Wt}$ .
  - $E_T^{miss}$  and  $\phi^{MET}$ .
  - $p_T/m_{\gamma\gamma}$ ,  $\eta$ ,  $\phi$ , *b*-tag score of the 3<sup>rd</sup> and 4<sup>th</sup> leading jets.

- 4-object invariant mass  $m_{b\bar{b}\gamma\gamma}$ .

- Distance between the 2 photons and between the 2 *b*-jets:  $\Delta R(\gamma_1, \gamma_2)$  and  $\Delta R(b_1, b_2)$ .
- Invariant mass of the 2 VBF jets  $m_{jj}$ and  $\Delta \eta(j_1, j_2)$ .
- Event shape variables: transverse sphericity, planar flow, and  $p_T$  balance.

|            | Low Mass                                               | High Mass                             | Cate   |
|------------|--------------------------------------------------------|---------------------------------------|--------|
|            | • ggF HH with $\kappa_{\lambda} = 5.6$                 |                                       | High N |
|            | and $\kappa_{\lambda} = 10$                            |                                       | High N |
| Signal     | VBF HH samples with                                    | • SM + BSM VBF HH                     | High N |
|            | <b>BSM</b> values for $(K_{\lambda}, K_{2V}, K_{V})$ . | samples                               | Low N  |
| Background | All single Higgs processes                             | All single Higgs processes            | Low N  |
|            | <ul> <li>γγ + ttγγ samples</li> </ul>                  | <ul> <li>γγ + ttγγ samples</li> </ul> | Low N  |

| Category    | Mass region                                      | BDT cuts                                    |
|-------------|--------------------------------------------------|---------------------------------------------|
| High Mass 1 | $m^*_{b\bar{b}\gamma\gamma} > 350 \text{ GeV}$   | 0.545 <bdt 0.830<="" score<="" td=""></bdt> |
| High Mass 2 | $m^*_{b\bar{b}\gamma\gamma} > 350 \text{ GeV}$   | 0.830 <bdt 0.905<="" score<="" td=""></bdt> |
| High Mass 3 | $m^*_{b\bar{b}\gamma\gamma} > 350 \text{ GeV}$   | BDT score > 0.905                           |
| Low Mass 1  | $m^*_{b\bar{b}\gamma\gamma} \le 350 \text{ GeV}$ | 0.430 <bdt 0.785<="" score<="" td=""></bdt> |
| Low Mass 2  | $m^*_{b\bar{b}\gamma\gamma} \le 350 \text{ GeV}$ | 0.785 <bdt 0.890<="" score<="" td=""></bdt> |
| Low Mass 3  | $m^*_{b\bar{b}\gamma\gamma} \le 350 \text{ GeV}$ | 0.890 <bdt 0.950<="" score<="" td=""></bdt> |
| Low Mass 4  | $m^*_{b\bar{b}\gamma\gamma} \le 350 \text{ GeV}$ | BDT score $> 0.950$                         |