

CMS VHH Search Search for HH with smaller production modes

Dec-21st, 2024

Chris Palmer, Xiaohu Sun(孙小虎), <u>Licheng Zhang(章立诚)</u> On behalf of the CMS VHH analysis team

Higgs Potential 2024 workshop For Higgs potential and BSM opportunities University of Science and Technology of China (USTC), Dec-19~23, 2024, Hefei.

licheng.zhang@cern.ch

Higgs Potential 2024

University of Maryland, College Park

H

Introduction

NUVERSITY 18 18 7 RYLAND

- > 10 years after the discovery of the Higgs Boson on the LHC
 - Higgs couplings to fermions and vector bosons compatible with SM <10%
 Exceptions are HH related couplings such as K_λ and K_{VV}
- HH productions is the direct prob to the Higgs self-coupling(Higgs potential) on the LHC
- HH searches have explored a big variety of decay modes and also started to expand beyond the gluon-gluon fusion production, ggF H looking into smaller productions
- VBF, VHH, ttHH etc.
 Low stats, but unique final states or/and advantages in featured phase space

		$\sqrt{s}=13{ m TeV}$	
al.		(LO)	NLO
a ggF HH	HH (EFT loop- improv.)	$(19.1^{+33\%}_{-23\%})$	$29.3^{+15+2.1\%}_{-14-2.5\%}$
VBF HH	HHjj (VBF)	$(1.543^{+9.4\%}_{-8.0\%})$	$1.684^{+1.4+2.6\%}_{-0.9-1.9\%}$
ttHH	$t\bar{t}HH$	$(1.027^{+37\%}_{-25\%})$	$0.792^{+2.8+2.4\%}_{-10-2.9\%}$
nd	W^+HH	$(0.252^{+1.4\%}_{-1.7\%})$	$0.326^{+1.7+2.1\%}_{-1.2-1.6\%}$
VHH	W^-HH	$(0.133^{+1.5\%}_{-1.7\%})$	$0.176^{+1.6+2.2\%}_{-1.2-2.0\%}$
	ZHH	$(0.240^{+1.4\%}_{-1.7\%})$	$0.315^{+1.7+2.0\%}_{-1.1-1.6\%}$
	$tjHH(\cdot 10^{-3})$	$(23.20^{+0.0\%}_{-0.8\%})$	$29.77^{+4.8+2.8\%}_{-2.8-3.2\%}$

Introduction VBF

NERSITL Print Prin

3

- VBF HH analysis is usually included in ggF HH publication
 - Treated as a separate signal region
 - Fitted simultaneously with ggF, as ggF contamination is not negligible in the VBF phase space
- Kinematics gets harder when K_{VV} increases \rightarrow strong constraints for high K_{VV} couplings

Introduction VHH

- Search for HH production mode associated with one vector boson (Z/WHH)
 - Focus on HH decay to 4b final states and leptonic decay and hadronic decay for V-bosons.
 - Complementary to ggF and VBF analyses with cleaner signal with V-leptonic selection
- Cross-sections are enhanced by the constructive interference.
 - Contribution on sensitivities over κ_{λ} at positive branch is expected.

- VHH channel has the unique feature to disentangle ZZHH/WWHH vertices according to the V-leptonic decay.
- Four orthogonal search channels depending on lepton multiplicity: MET, SL, DL, FH.*

* MET, Single-Lepton, Double-Lepton, Full-Hadronic

• Analysis uses full run2 samples/dataset(138fb⁻¹) with UL nano v9

- 2016,2017: SingleMuon, DoubleMuon, SingleElectron, DoubleElectron, MET, BTagCSV
- 2018: SingleMuon, DoubleMuon, EGamma, MET, JetHT

• Signals:

LO

- **ZHH** signal re-weighted and scaled to NNLO
 - * Re-weighting and Scaling, residual differences after basic selections are covered by syst. Uncertainties.
- WHH signal scaled to NLO
- Linearly interpolate/extrapolate existing samples to get more couplings for limit scan
 - According to the <u>talk</u>, implemented in <u>HHModel</u> that used by all HH analysis
- Use Moore-Penrose inverse to accommodate 8 signal samples

κ_V	κ_{2V}	κ_{λ}	
0.5	1.0	1.0	
1.0	0.0	1.0	
1.0	1.0	0.0	
1.0	1.0	1.0	
1.0	1.0	2.0	
1.0	2.0	1.0	
1.5	1.0	1.0	
1.0	1.0	20.0	
$\sigma(\kappa_{\lambda},\kappa_{V},\kappa_{2V}) = c^{T}(\kappa_{\lambda},\kappa_{V},\kappa_{2V})C^{-1}\sigma$			

• Backgrounds:

- DY+Jets: Re-weighted to NLO and scaled to NNLO with K-fac
- TT: Replace TT+B events in tt(5FS) with ttbb(4FS)(<u>TT stitching</u>)
 - ★ Validated to have smaller uncertainty and better kinematics modeling.
- Others: SingleTop, TTV, TTH, Zto $\nu\nu$ +Jets using MC

Full Run-2 Ultra Legacy MC samples are used for sig/bkg studies

6

All 3 years triggers have been studied

Leptonic Triggers

	Channel	Year	HLT paths	
		2016	HLT IsoMu24 OR HLT IsoTkMu24	Muon
	$W(\mu\nu)H$			1 Iuon
L		2017	HLT_IsoMu27	
		2018	HLT_IsoMu24	
		2016	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL	OR
	$Z(\mu\mu)H$		HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ	OR
			HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL	OR
ור			HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_DZ	
4L				
		2017	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8	OR
			HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass8	
		2018	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8	

	Channel	Year	HLT paths
		2016	HLT_Ele27_WPTight_Gsf
11	$W(e\nu)H$	2017	HLT_Ele32_WPTight_Gsf (emulation)
		2018	HLT_Ele32_WPTight_Gsf
		2016	$HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ$
2L	Z(ee)H	2017	$HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL$
		2018	$HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL$

	Year	HLT path for analysis	MET
	2016	HLT_PFMET110_PFMHT110_IDTight	OR
		HLT_PFMET120_PFMHT120_IDTight	
		OR HLT_PFMET170_NoiseCleaned	OR
MET		HLT_PFMET170_BeamHaloCleaned	OR
		HLT_PFMET170_HBHECleaned	
	2017	HLT_PFMET120_PFMHT120_IDTight	OR
		HLT_PFMET120_PFMHT120_IDTight_Pl	FHT60
	2018	HLT_PFMET120_PFMHT120_IDTight	
	L		

Hadronic Triggers let

o 2016:

HLT_QuadJet45_TripleBTagCSV_p087 || HLT_DoubleJet90_Double30_TripleBTagCSV_p087 || HLT_DoubleJetsC100_DoubleBTagCSV_p014_DoublePFJetsC100MaxDeta1p6
2017: HLT_PFHT300PT3_QuadPFJet_75_60_45_40_TriplePFBTagCSV_3p0 ||

• 2018:

HLT_PFHT330PT30_QuadPFJet_75_60_45_40_TriplePFBTagDeepCSV_4p5 || HLT_DoublePFJets | 16MaxDeta | p6_DoubleCaloBTagDeepCSV_p71

Dedicated efficiencies measurement for leptons approved by POGs

HLT_DoublePFJets100MaxDeta1p6_DoubleCaloBTagCSV_p33

<u>Electron SF</u>: Reco X ID_ISO X Trigger <u>Muon SF</u>: ID X ISO X Trigger MET Trigger SF: Start from 150GeV

V-leptonic SFs are good for VHbb/VHcc on UL analyses (documented in <u>AN-21-209</u>)

* More details about trigger scale factors can be found in the backup slides

Higgs Potential 2024

Lepton Selection

• MET

- Met Filters
- MET_pt > 150GeV
- No jet (pt >30GeV and eta <10) with dPhi(Jet, MET) < 0.3 (suppress QCD)

• Single-Lepton

- GoodMuon: (1 Muon for W)
 - | Muon_eta | < 2.4
 - Muon_pt > 25GeV

w $\sqrt{\sqrt{\sqrt{2}}}$

- Muon_pfRellso04_all < max_rel_iso [0.06]</p>
- GoodElectron: (1 Electron for W)
 - |Electron_eta| < 2.5
 - Electron_pt > 32(17/18); Electron_pt > 28(16)
 - Electron_pfRelIso03_all < max_rel_iso [0.06]
 - Electon_mvaFall17V2Iso_WP90>0

• Double-Lepton

- GoodMuons: (2 Muons for Z)
 - |Muon_eta| < 2.4
 - Muon_pt > 20GeV
 - Muon_pfRelIso04_all < max_rel_iso [0.25]</p>

z vvvv

- GoodElectrons: (2 Electrons for Z)
 - |Electron_eta| < 2.5
 - Electron1_pt > 23GeV; Electron2_pt > 14GeV
 - Electron_pfRelIso03_all < max_rel_iso [0.15]
 - Electon_mvaFall17V2Iso_WP90>0
- Z mass window [80,100] GeV in DL channel
 - [80,100] GeV: Z mass region (research region)
 - Outside: TT Control region

Electron selections optimized in all 3 V-Leptonic channels

8

Jets Selection

Jet selections are optimized in all 4 channels

VHH@CMS Analysis Channels & Topologies

CMS

VHH@CMS Analysis Strategies

• V-Leptonic: All backgrounds modeled from MC and SRs are simultaneously fit with SB to control the systematics uncertainty from normalization.

Wbin, Inverted

- In 2L channel and Boosted topology, we use BDT based re-weighting technique to model the backgrounds in SRs. $Weight_{bin} = \frac{w_{bin, Pass}}{w_{bin, Pass}}$
- 2L channel:

- Re-weight BDTs are trained to include the information about the differences between 2b-tagged events and 3/4 b-tagged events
- 3 main BKGs and 2 b-jet multiplicities introduce 6 RwT. BDTs to realize the re-weighting.
- SB events are used for training, CR for validation and finally apply on SR events.

- Input variables are same as the SvB BDTs for constructive reason.
- Similar method adapted in boosted topology using Failed region to model the backgrounds in HP/LP SR.
 - 2 types of uncertainty can cover the difference properly.

VHH@CMS Background Modeling

- V-Hadronic: Dominant
- background from Multi-Jets are modeled by 2 steps ResNet based Data-Driven method.
- The 4-tagged-jets background is modeled by 3-tagged-jets data.
- Jet Combinatoric Model(JCM): A weight only based on jet multiplicity (pseudo-tag rate fitted in the data minus TT)
 FvT Classifier: A weight mostly based on kinematic, derived by a ResNet which has the same architecture as the SvB Classifier.

After FvT reweighting

Introduce the new uncertainty to cover the difference properly.

The largest uncertainty comes from statistical uncertainty

B-tagging, background normalization, JES/JER are the leading contributors for systematic uncertainties

Uncertainty sources (abs.)	2L	1L	MET	FH	inclusive
Sys	tematic ur	ncertainti	es		
Lopton uncortainties	+1.2%	+3.7%	+0	+0	+5.4%
Lepton uncertainties	-0.4%	-0	-0	-0	-4.5%
MET uncertainties	+0	+0	+1.6%	+0	+4.3%
WET uncertainties	-0	-0	-0	-0	-0
Int uncertainties	+17.2%	+19.7%	+26.5%	+19.9%	+26.3%
Jet uncertainties	-5.2%	-16.0%	-23.5%	-2.0%	-15.0%
Estist uncortainties	+0	+3.3%	+3.3%	+0	+6.2%
Pat jet uncertainties	-0	-9.1%	-2.2%	-0	-3.0%
htagging uncertainties	+40.5%	+35.0%	+56.1%	+36.4%	+61.7%
blagging uncertainties	-4.1%	-3.2%	-29.3%	-0.9%	-34.1%
Normalization uncortainties	+40.2%	+33.9%	+52.0%	+35.2%	+58.6%
Normalization uncertainties	-11.7%	-4.2%	-25.3%	-0	-31.4%
Re-Weight uncertainties	+13.5%	+13.2%	+22.0%	+0	+21.8%
Re-weight uncertainties	-12.0%	-17.2%	-12.8%	-0	-11.5%
Other modelling uncertainties	+10.4%	+16.6%	+13.2%	+24.5%	+19.9%
Outer moderning uncertainties	-10.5%	-2.9%	-3.2%	-24.2%	-13.7%

I uminocity un containty	+5.3%	+5.0%	+8.3%	+4.2%	+7.6%
Luminosity uncertainty	0	-1.0%	-1.6%	-0	-3.6%
The constitution to in the constitution	+15.1%	+2.5%	+23.1%	+15.5%	+17.6%
Theoretical uncertainties	-3.0%	-11.0%	-10.0%	-2.3%	-7.0%
Others	+2.9%	+4.4%	+9.1%	+7.0%	+8.8%
Others	-5.6%	-2.6%	-7.3%	-1.3%	-8.6%
Tatalantation	+46.8%	+46.0%	+62.7%	+46.7%	+66.8%
Iotal systematic uncertainty	-21.3%	-32.6%	-40.7%	-24.4%	-43.5%
Sta	tistical u	ncertaintie	es		
Statiatizal containts	+88.2%	+89.0%	+77.6%	+70.0%	+74.4%
Statistical uncertainty	-97.8%	-94.6%	-91.1%	-97.0%	-90.1%
	Total unc	ertainty			
Total an containty	+136	+111	+161	+163	+81.1
lotal uncertainty	-98.6	-82.6	-123	-132	-62.7
Center value					
Center value	101	12.5	283	190	145

The freely-floating normalizations for tt(ttb) and DY are among the largest impact parameters

B-tagging SFs, Top Pt re-weighting and b-jets energy regression uncertainty are also important nuisances

VHH@CMS Results

14

summed for K_{λ} -enriched and $K_{\nu\nu}$ -enriched SR samples separately.

licheng.zhang@cern.ch

Higgs Potential 202

VHH@CMS **Results**

 κ_{WW}

10

20

138 fb⁻¹ (13 TeV)

-2 \\ log(L)

10

10⁻¹

 10^{-2}

30

 κ_{WW}

VHH@CMS Results

• First search for VHH production in CMS, published on Moriond 2023

- Complementary to ggF and VBF HH analyses, strong sensitivity at κ_{λ} around 5
- The observed (expected) allowed intervals from the search at 95% CL are:

- Double the statistics to optimize the background modeling
- Strategies and (ML) algorithms can be dedicated adapted for better sensitivity
- Potentials can also come from the multi-leptonic decaying channel

Thank You!

Dec-21st, 2024

Chris Palmer, Xiaohu Sun(孙小虎), <u>Licheng Zhang(章立诚)</u> On behalf of the CMS VHH analysis team

Higgs Potential 2024 workshop For Higgs potential and BSM opportunities University of Science and Technology of China (USTC), Dec-19~23, 2024, Hefei.

licheng.zhang@cern.ch

Higgs Potential 2024

University of Maryland, College Park

H

backup \checkmark

ATLAS VHH results

• For SMVHH production, a 95% confidence-level (CL) upper limit of 183 on μ is observed compared with 87^{+41}_{-24} expected

	κ_{λ}	κ_{VV}	κ_{ZZ}	κ_{WW}
Observed	(-34.4, 33.3)	(-8.6, 10.0)	(-9.9, 11.3)	(-12.3, 13.5)
Expected	(-24.1, 22.9)	(-5.7, 7.1)	(-7.1, 8.5)	(-8.6, 9.8)

Signal Modeling

• Linearly interpolate/extrapolate existing samples to get more couplings for limit scan

• According to the <u>talk</u>, implemented in <u>HHModel</u> that used by all HH analysis

• Use Moore-Penrose inverse to accommodate 8 signal samples

$\sigma(\kappa_{\lambda}, C_{V}, C_{2V}) = \mathbf{c}^{T}(\kappa_{\lambda}, C_{V}, C_{2V})\mathbf{C}^{-1}\boldsymbol{\sigma}$					
κ_V	κ_{VV}	κλ			
0.5	1.0	1.0			
1.0	0.0	1.0			
1.0	1.0	0.0			
1.0	1.0	1.0			
1.0	1.0	2.0			
1.0	2.0	1.0			
1.5	1.0	1.0			
1.0	1.0	20.0			

LO

- Following the strategies in tH/ttH(bb) Analysis:
 - $t\bar{t}b\bar{b}$ in Powheg NLO $t\bar{t}$ 5FS sample is from parton shower which will bring large uncertainties.
 - Powheg NLO 4FS sample has better performance in modeling $t\bar{t} + b\bar{b}$ kinematics.

- We need to stitch together these two samples for better background modeling.
 - In each tt
 event, define 'additional b-jet' as a particle level b jet with pT>20GeV and |eta|<2.4 and not from top decay.</p>
 - Replace tt + B events in tt(5FS) with ttbb(4FS)

Entire tt+jets phase-space

≥1 additional b jet p_>20 GeV η< 2.4

https://indico.cern.ch/event/943919/contributions/3987268/attachments/2099755/3530092/slides_20_09_09_Hbb_ttBModel.pdf

Scale Factors

- <u>Electron SF</u>: Reco X ID_ISO X Trigger
- <u>Muon SF</u>: ID X ISO X Trigger
- MET Trigger SF: Start from 150GeV

An example, 2 types of uncertainties are introduced to cover the uncertainty brought by the method. • V-Leptonic

An example, comparison between original MC and reweighted fail-selection MC and how the 2 types of uncertainty can cover the difference properly.

m(V) [GeV]

Closure

+ Pass

- Pass - FailReweight - Type1 Up - Type1 Down - Type2 Up - Type2 Down

Background Modeling

1000

500

0.5

ZII 3bCR κ_{λ} -enrich

+ Pass

FailReweight Type1 Up Type1 Down

Týpe2 Down

pT(V) [GeV]

Type2 Up

• V-Hadronic: Dominant background from Multi-Jets are modeled by 2 steps ResNet based Data-Driven method.

• The 4-tagged-jets background is modeled by 3-tagged-jets data.

① Jet Combinatoric Model(JCM): A weight only based on jet multiplicity (pseudo-tag rate fitted in the data minus TT) 2 FvT Classifier: A weight mostly based on kinematic, derived by a ResNet which has the same architecture as the SvB Classifier.

CMS

Variables used in the SvB Classifiers

B-tag(H1j1)	B-tag(H1j2)	B-tag(H2j1)	
pT(V)	pT(H1)	pT(H2)	
mass(H1)	mass(H2)	mass(HH)	
Phi(H1)	Phi(H2)	Year	
B-tag(H2j2)	pT(HH)	Phi(V)	
	Variables for SvB BD	T in SL/MET channel	
mass(V)	mass(H1)	HT(lljjjj)	
dPhi(V, H1)	dEta(L1,L2)	dPhi(V, HH)	
dR(H1,H2)	mass(HH)	pT(H1)	
pT(j No.4 btag)	E(H1)	pT(V)	
deta(H1, H2)	pT(j No.3 btag)	pT(HH)	
pT(V)/pT(HH)	pT(L1)/mass(V)		
	Variables for SvB BDT in DL channel		
pT(V)	pT(H1)	eta(HH)	
E(HH)	mass(HH)	eta(H1)	
eta(H2)	deta(H1, H2)	dPhi(H1, H2)	
dR(H1, H2)	dPhi(V, H2)	pT(H2)/pT(H1)	
1	Variables for SvB Classifier in FH channel		

Variables used in the Kl BDTs

mass(HH)	dR(H1,H2)	pT(H1)	
dPhi(L1,L2)	pT(V)	dEta(L1,L2)	
dR(H2b1,H2b2)	dR(H1b1,H1b2)	pT(L1)/mass(V)	
dPhi(V, H2)	pT(H2)/pT(H1)	pT(L2)/pT(L1)	
pT(L1)	Variables for KI BDT in DL channel		
pT(V)	pT(H1)	pT(H2)	
mass(H1)	mass(H2)	mass(HH)	
E(H2)	E(HH)	dPhi(H1, H2)	
deta(H1, H2)	dR(H1, H2)	dPhi(V, H2)	
pT(HH)	E(H1)	eta(HH)	
pT(H2)/pT(H1)	Year		
	Variables for KI BDT in	n SL/MET/FH chann	

Coupling Cats BDT and SvB Classifiers are optimized in all channels

Backup

Background Modeling

Double-Lepton Channel

- Main background are TT(TTBB), DY+Jets
 - Re-weight BDTs are trained to include the information about the differences between 2b-tagged events and 3/4 b-tagged events.
 - 3 main BKGs and 2 b-jet multiplicities introduce 6 RwT. BDTs to realize the re-weighting.
 - SB events are used for training, CR for validation and finally apply on SR events.
 - Input variables are same as the SvB BDTs.

Smaller Stat. Uncertainties ; Reliable background model;

- Inside Z mass window, a fraction fit is applied in every regions to achieve better Data/MC agreement.
- DY/TT/TTBB process are free float in the final fit.

- Main background are TT(TTBB)
- Same strategy from previous slides about DL channel
- Re-weight events in VR to mimic LP, HP+MP
 - 2 sets of weights

pT(V)	pT(H1)	pT(H2)		
pT(HH)	mass(HH)	mass(H1)		
mass(H2)	Phi(V)	Phi(H1)		
Phi(H2)	Year			
Variables for RwT BDTs and SvB Classifier in Boosted channel				

- Topology priority
 - By comparing the limit scan results
- Conclusion
 - prioritize the Boosted topology

Boosted topology has been studied in SL, MET channels

Systematic uncertainties

Theoretical Uncertainties

log-normal uncertainty

- Signal cross section (NNLO accuracy)
- \circ H \rightarrow bb Branching ratio
- Shape uncertainty
- LO ZHH reweight to NNLO
- LO Drell-Yan reweight to NLO
- Factorization and renormalization scales
- Proton PDFs
- Parton shower initial-state and final-state radiation showers
- Freely-floating normalizations
 - CMS_vhh4b_SF_TT_TTB_ch_year $\rightarrow t\bar{t}$ and $t\bar{t}b\bar{b}$
 - ° CMS_vhh4b_SF_TTB → $t\bar{t}b\bar{b}$
 - CMS_vhh4b_SF_DY_ZII_run2 → DY

• Experimental Uncertainties

log-normal uncertainty

• Luminosity uncertainty

Shape uncertainty

- PileUP uncertainty
- LI prefiring uncertainty
- Lepton identification and reconstruction SF
- JES, JER uncertainty
- b jet energy regression uncertainty
- ParticleNet mass regression uncertainty
- DeepJet b-tagging efficiency uncertainty
- ParticleNet tagging uncertainty
- Background reweighting uncertainties
- Top pT reweighting uncertainties
- FH: background systematic uncertainty, extracted from mix models

2L

Backup

¥_10⁴

10²

Events

Evel

CMS Supplementary

 $Z \rightarrow vv$ Resolved, κ_{2v} -enriched

138 fb⁻¹ (13 TeV)

TT TTB ST ttH(H→bb) TTV Zounu

Znunu

Data 145*VHH(SM)+Bkg.

•

MET

138 fb⁻¹ (13 TeV)

TTB

TTV

• • • • • • • •

TT

TTB

tīH(H→bb)

145*VHH(SM)+Bkg.

ST

TTV

٠ Data 138 fb⁻¹ (13 TeV)

Data

٠

tīH(H→bb)

145*VHH(SM)+Bkg.

ST

CMS Supplementary

CMS Supplementary

W→Iv Boosted LP

LP

104

10³

10²

10

0

1.3

0.7

10²

10

0

0.2

 $W \rightarrow Iv$ Resolved, κ_{2v} -enriched

 κ_{VV} -enhanced

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SvB Classifier Output

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SvB Classifier Output

٠

Backup

FH

VHH Analysis

Results

VHH has competitive sensitivity at κ_λ at around 5, where most of ggF HH are weak

• 2D likelihood scan, left is expected, right is observed

Peking University

- Decompose κ_{VV} to κ_{ZZ} and κ_{WW} (left is expected, right is observed)
- MET, 2L channels mainly affect κ_{77} coupling, but not κ_{WW} . We have excess mainly from MET channel, so we also see enhancement in κ_{77}

