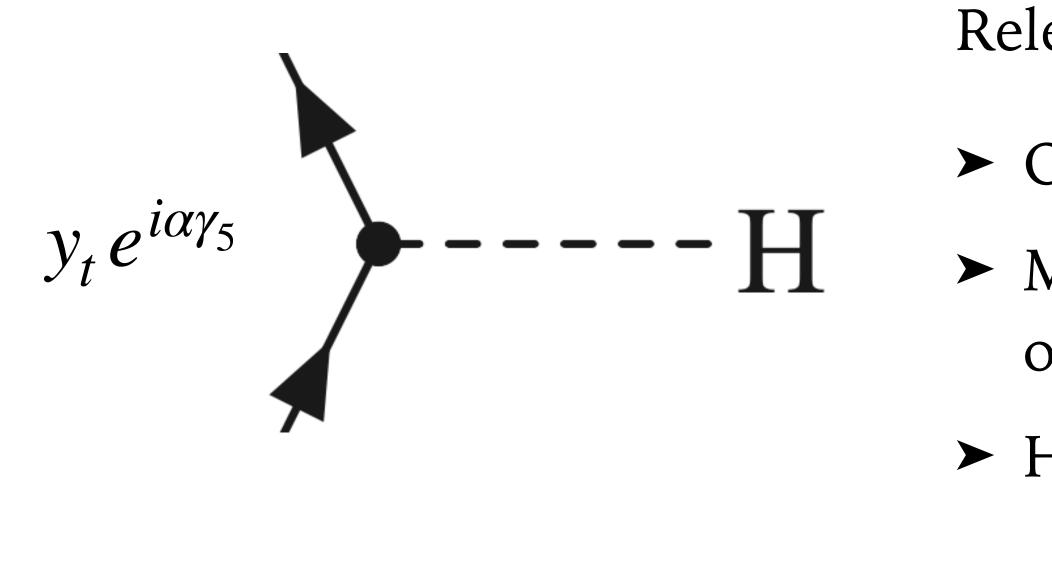
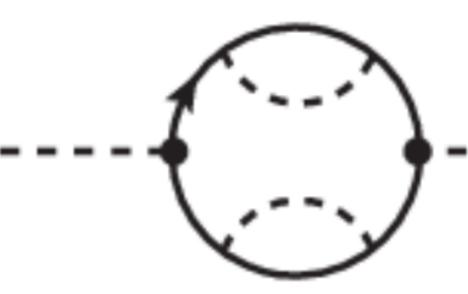
On the NNLO calculations for tTH production at hadron colliders

Li Lin Yang Zhejiang University

Higgs Potential 2024, 2024.12.19-23, Hefei

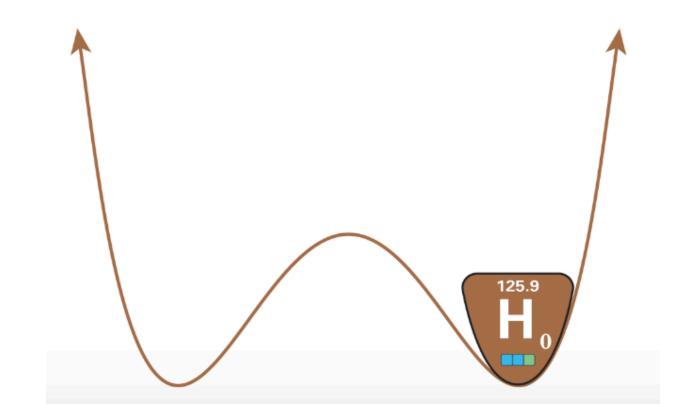
The top quark Yukawa coupling



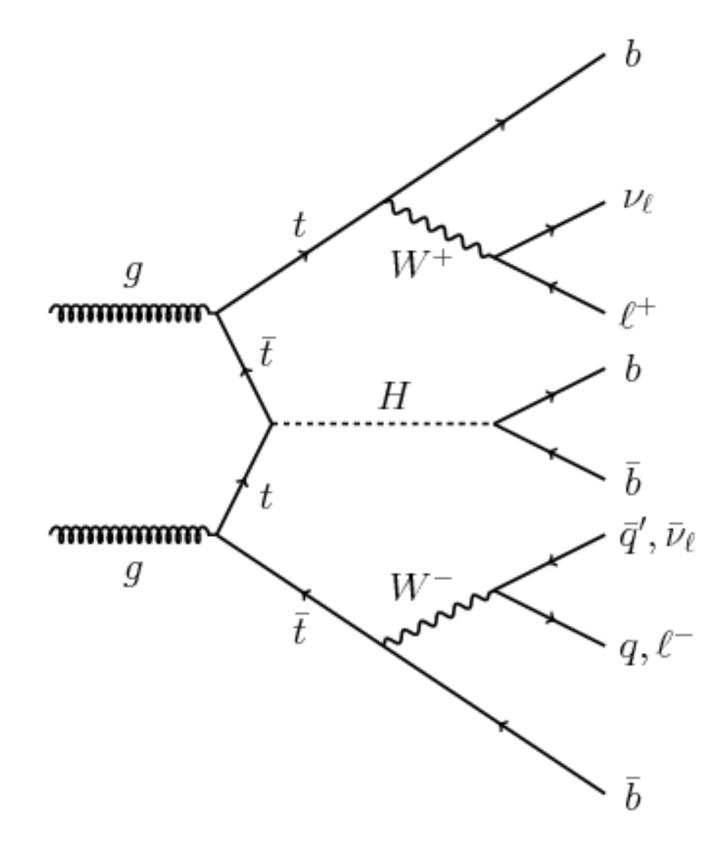


Relevant for

- Origin of masses of fundamental fermions
- Matter-anti-matter asymmetry (possible source) of CP violation)
- Higgs effective potential (vacuum stability)

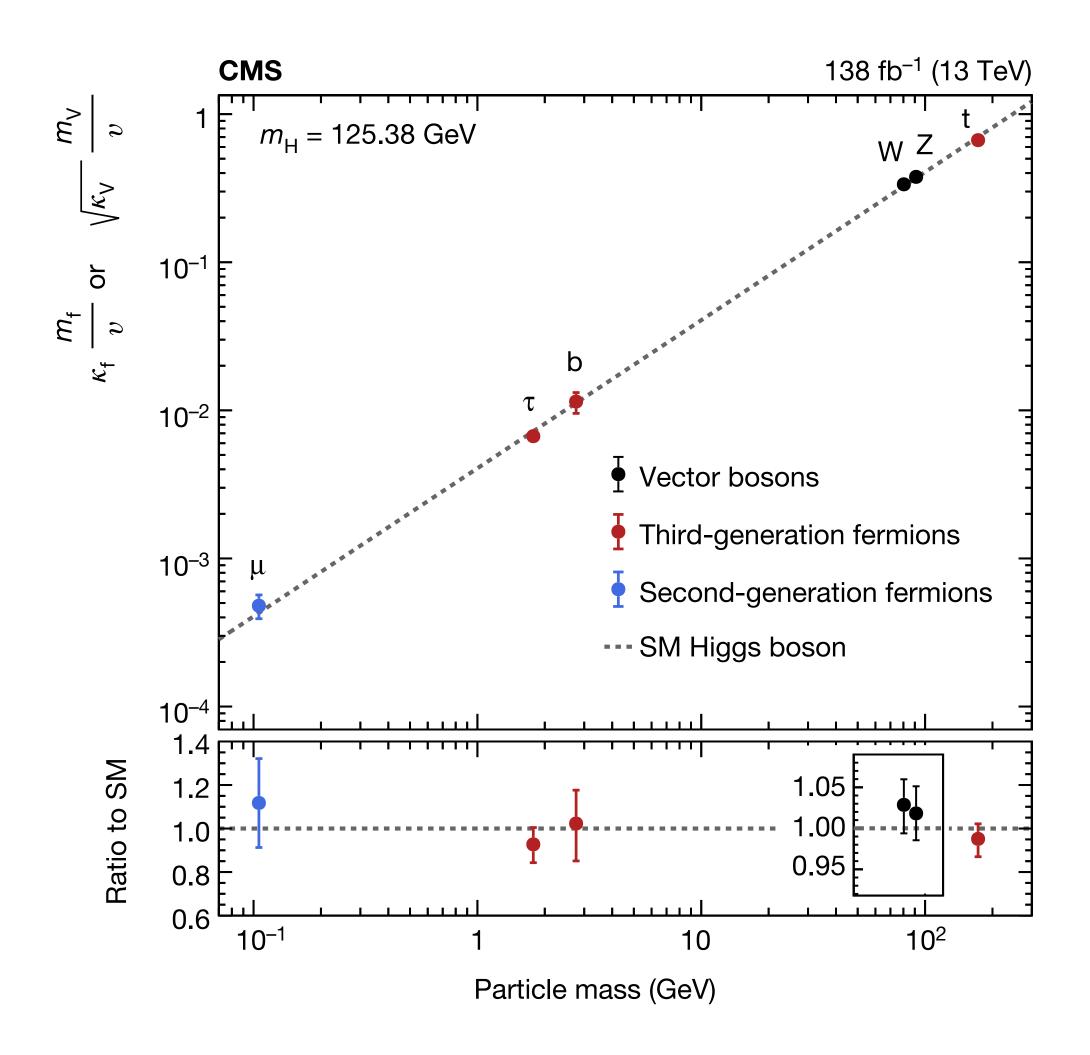


Associated tTH production

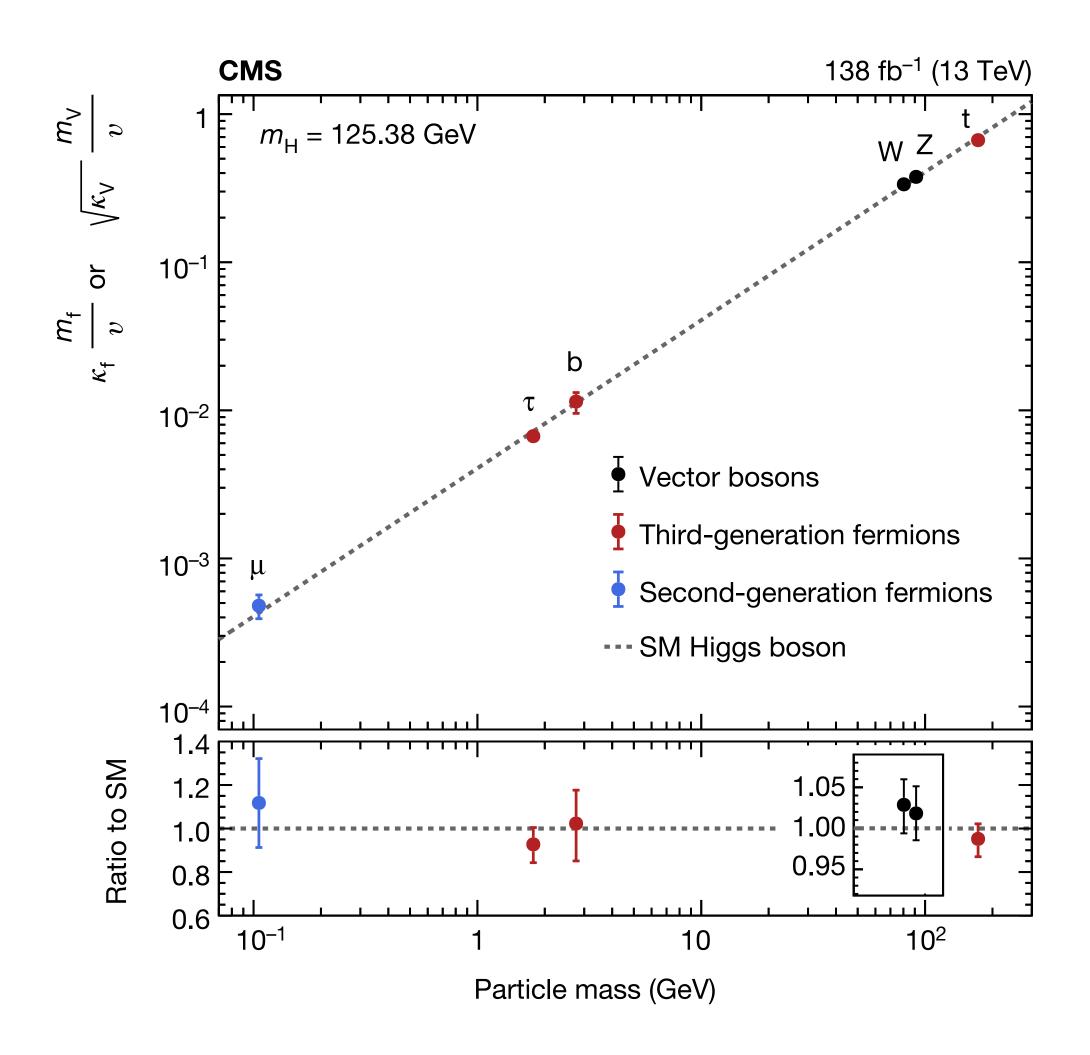


Direct probe of top quark Yukawa coupling ► Observed in 2018 by ATLAS and CMS ► CP structure probed in 2020

The need for precision



The need for precision



 $\sqrt{s} = 14 \text{ TeV}$, 3000 fb⁻¹ per experiment



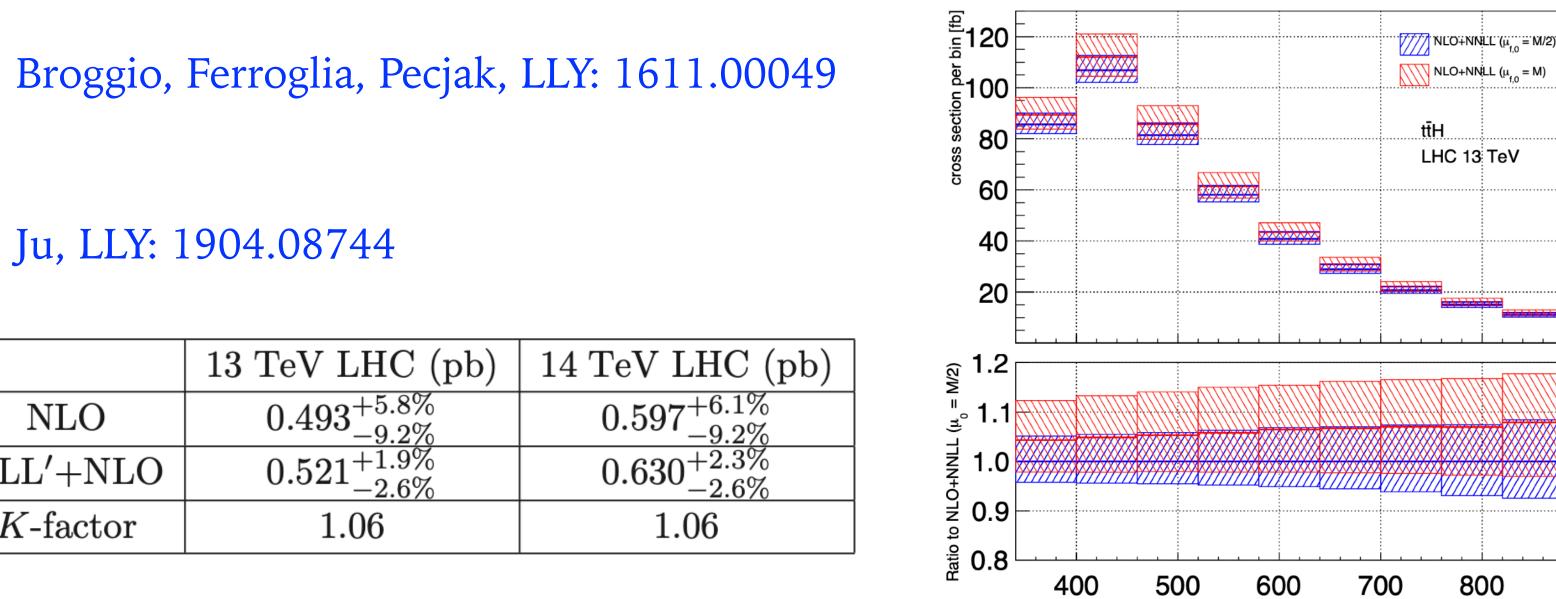
Theoretical status

► NLO + resummation

Coulomb corrections

Ju, LLY: 1904.08744

	$13 { m TeV LH}$
NLO	$0.493^{+5.}_{-9.}$
NLL'+NLO	$0.521^{+1.}_{-2.}$
K-factor	1.06



M_{ff} (GeV)

Theoretical status

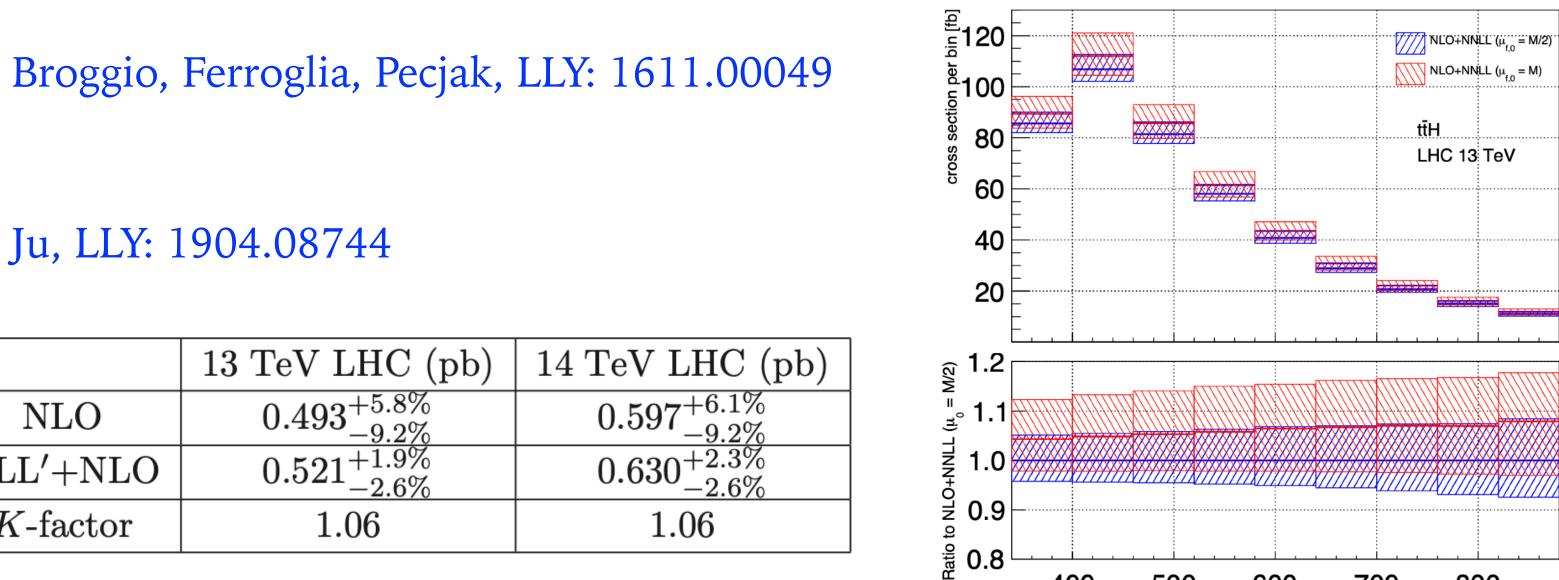
► NLO + resummation

Coulomb corrections

Ju, LLY: 1904.08744

	$13 { m TeV LH}$
NLO	$0.493^{+5.}_{-9.}$
NLL'+NLO	$0.521^{+1.}_{-2.}$
K-factor	1.06

- Bottlenecks towards NNLO
 - ► Two-loop amplitudes
 - ► IR subtraction



500

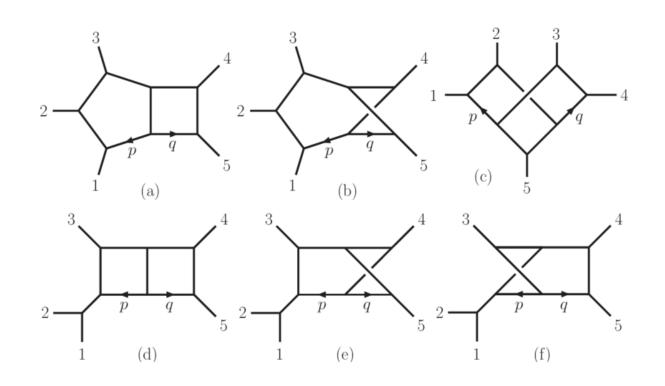
600

400

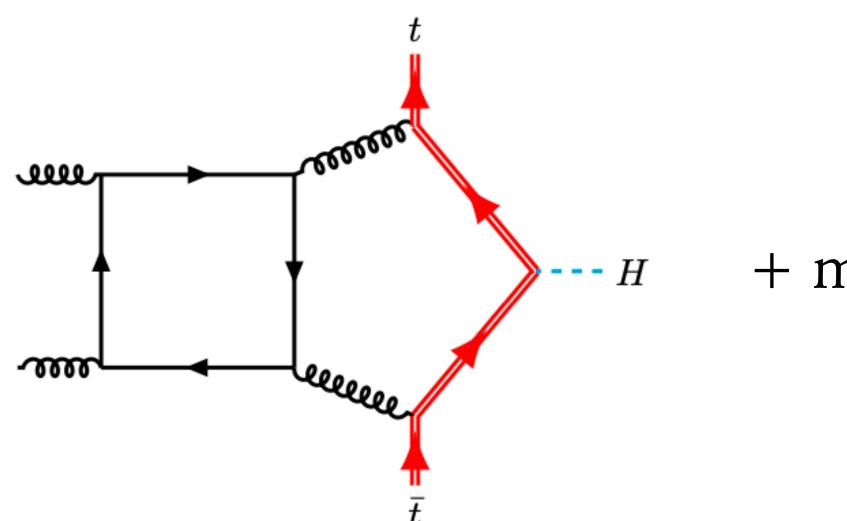
700

800

M_{ff} (GeV)



Two-loop amplitudes for $t\bar{t}H$

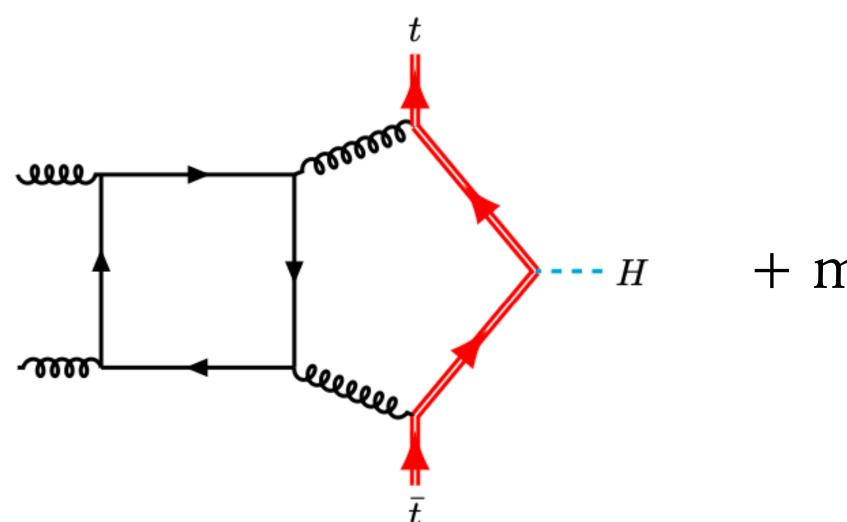


- ► Two-loop five-point amplitudes with 7 scales
- Partial results for simpler families
- Full results require much more efforts (analytic + numeric methods)

+ many more planar and non-planar families

e.g.: 2312.08131, 2402.03301

Two-loop amplitudes for $t\bar{t}H$



- ► Two-loop five-point amplitudes with 7 scales
- Partial results for simpler families
- Full results require much more efforts (analytic + numeric methods)

+ many more planar and non-planar families

e.g.: 2312.08131, 2402.03301

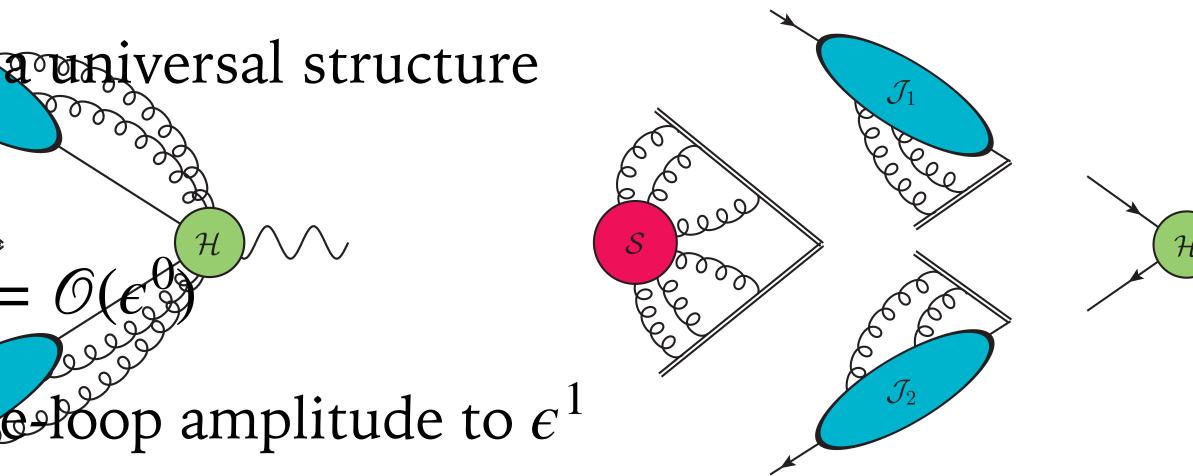
Many new developments not to be covered in this talk

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

 $Z^{-1}(\epsilon) \mathcal{M}$ UV renormalize

Two-loop poles = Two-loop Z-factor \times One-loop amplitude to ϵ^1

Chen, Ma, Wang, LLY, Ye: 2202.02913



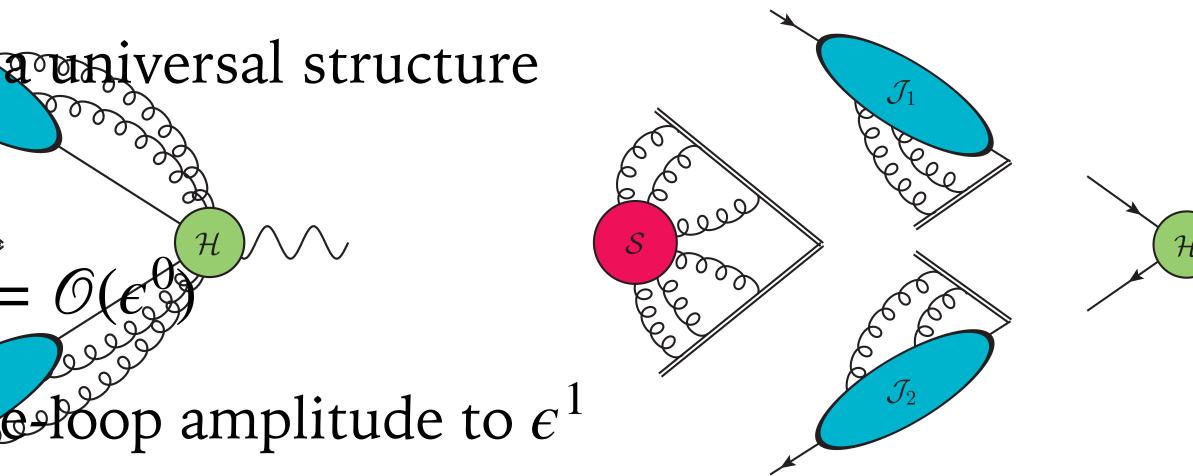
IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

 $Z^{-1}(\epsilon) \mathcal{M}^{UV}$ renormalize

Two-loop poles = Two-loop Z-factor \times One-loop amplitude to ϵ^1

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

Chen, Ma, Wang, LLY, Ye: 2202.02913



IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

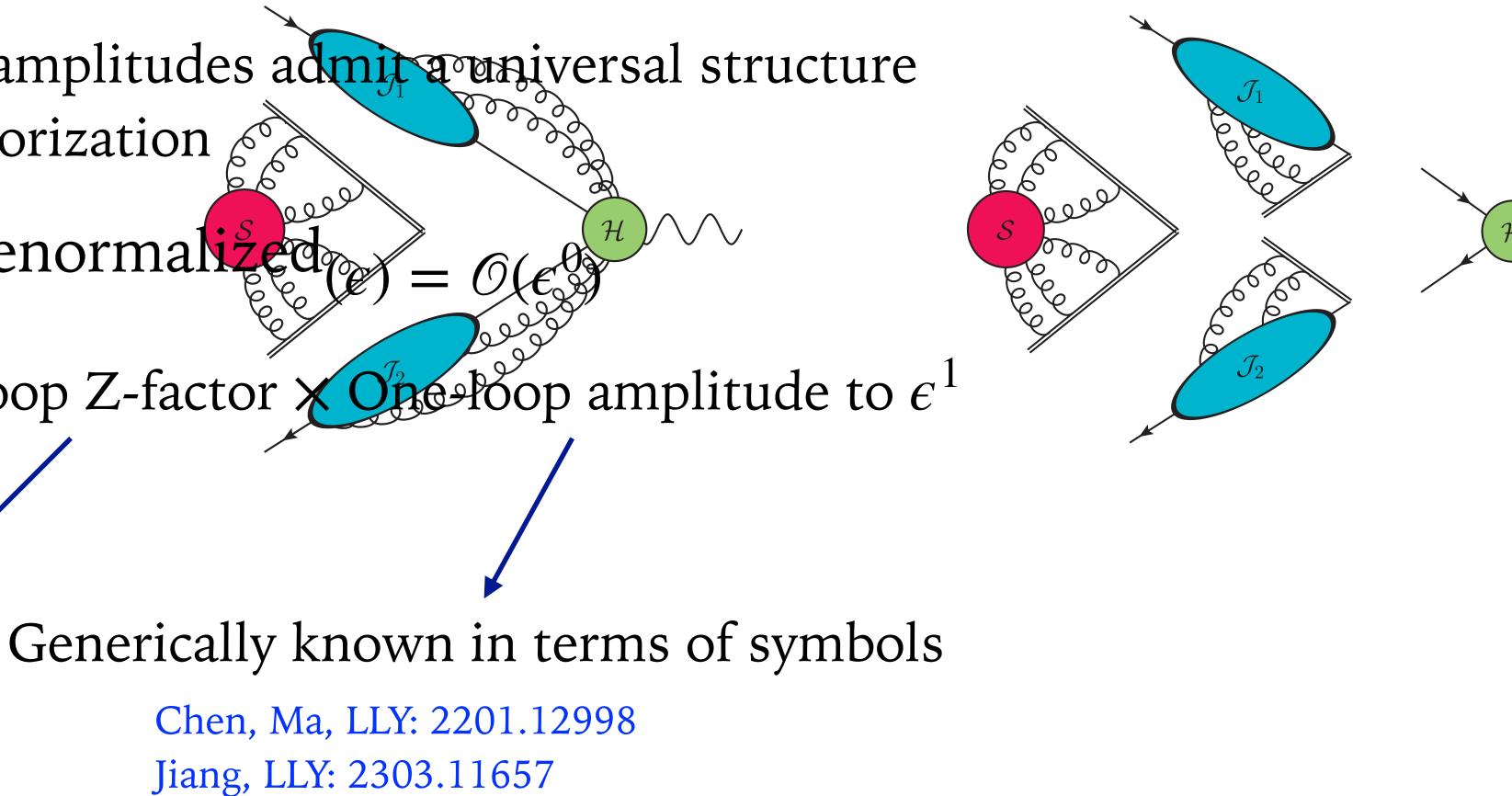
 $Z^{-1}(\epsilon) \mathcal{M}^{UV}$ renormalize

Two-loop poles = Two-loop Z-factor \times One-loop amplitude to ϵ^1

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

Chen, Ma, LLY: 2201.12998 Jiang, LLY: 2303.11657

Chen, Ma, Wang, LLY, Ye: 2202.02913



IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

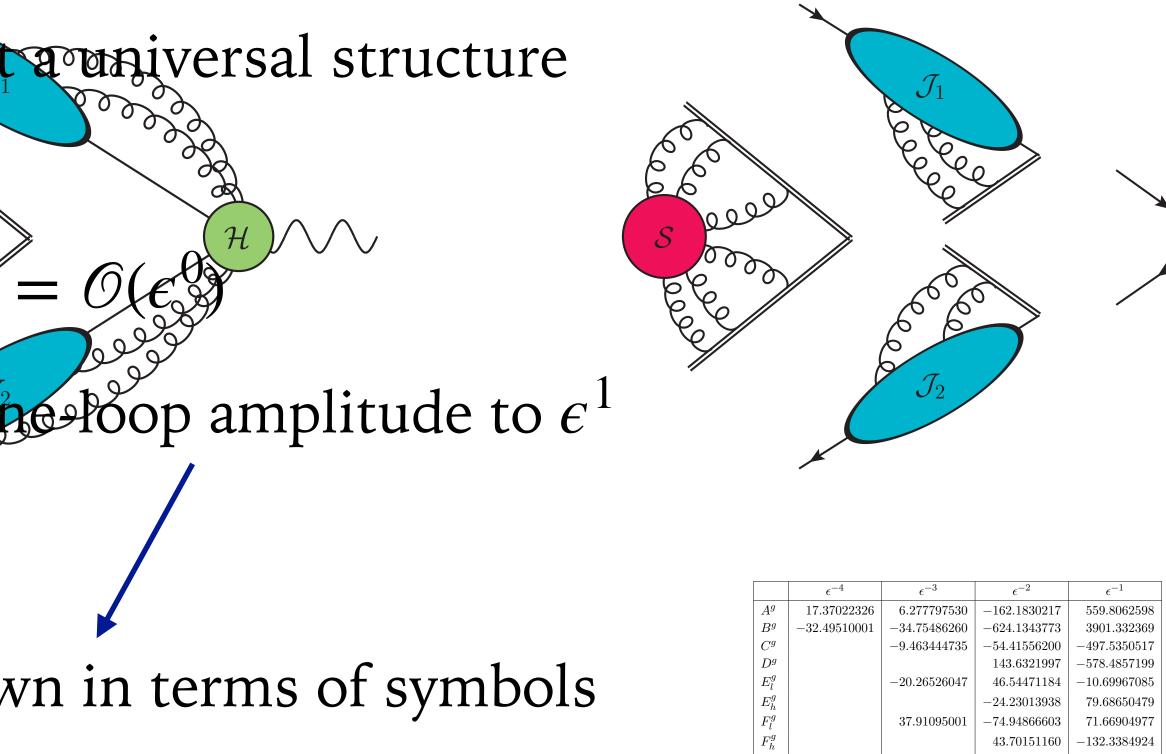
 $Z^{-1}(\epsilon) \mathscr{M}^{UV}$ renormali

Two-loop poles = Two-loop Z-factor \times One-loop amplitude to ϵ^1

Ferroglia, Neubert, Pecjak, LLY: Generically known in terms of symbols 0907.4791, 0908.3676 Chen, Ma, LLY: 2201.12998 Jiang, LLY: 2303.11657

- Predict two-loop IR poles for tTH
- Provide strong check on two-loop amplitudes
- ► Validate IR subtraction

Chen, Ma, Wang, LLY, Ye: 2202.02913



15.03938540

7.650785464

-2.390051823

2.390051823

2.390051823

2.390051823

 C^q

 D_l^q

 D_h^q

 F_{lh}^q F_h^q

4.731722368

3.860049613

-7.221133335

0.597121534

-186.5751188

0.308675876

6.24434919

1.610219156

-6.244349191

85.25318119 6.363526190

-10.52987601

8.076713126

19.49234494 -14.56717053

-34.95784899

-21.39439443

-6.605875838

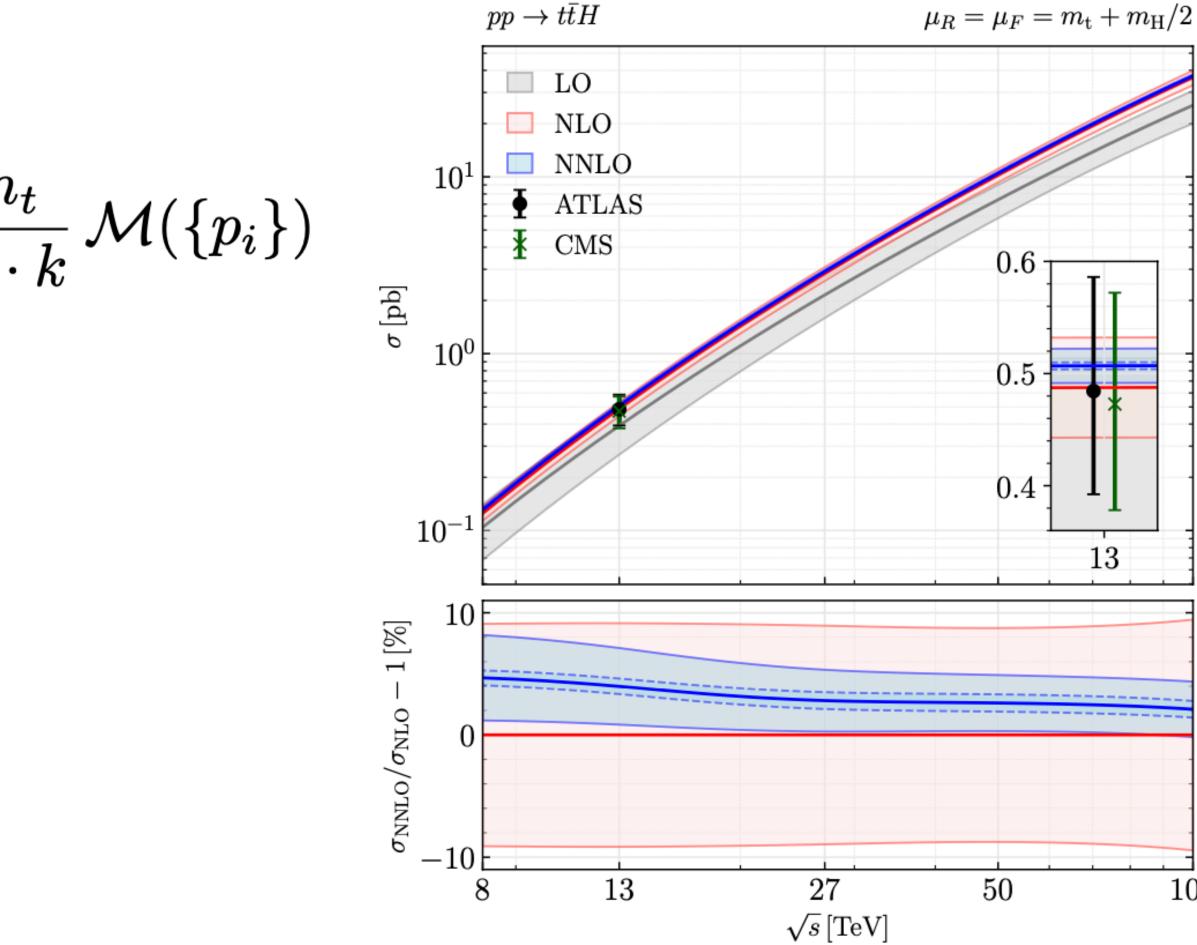
4.86038798

77.52356965

19.76269918

Eikonal approximation: $2 \rightarrow 2$ kinematics

 $\mathcal{M}(\{p_i\},k) \simeq F(\alpha_{\mathrm{S}}(\mu_{\mathrm{R}});\frac{m_t}{\mu_{\mathrm{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{m_t}{p_i \cdot k} \mathcal{M}(\{p_i\})$



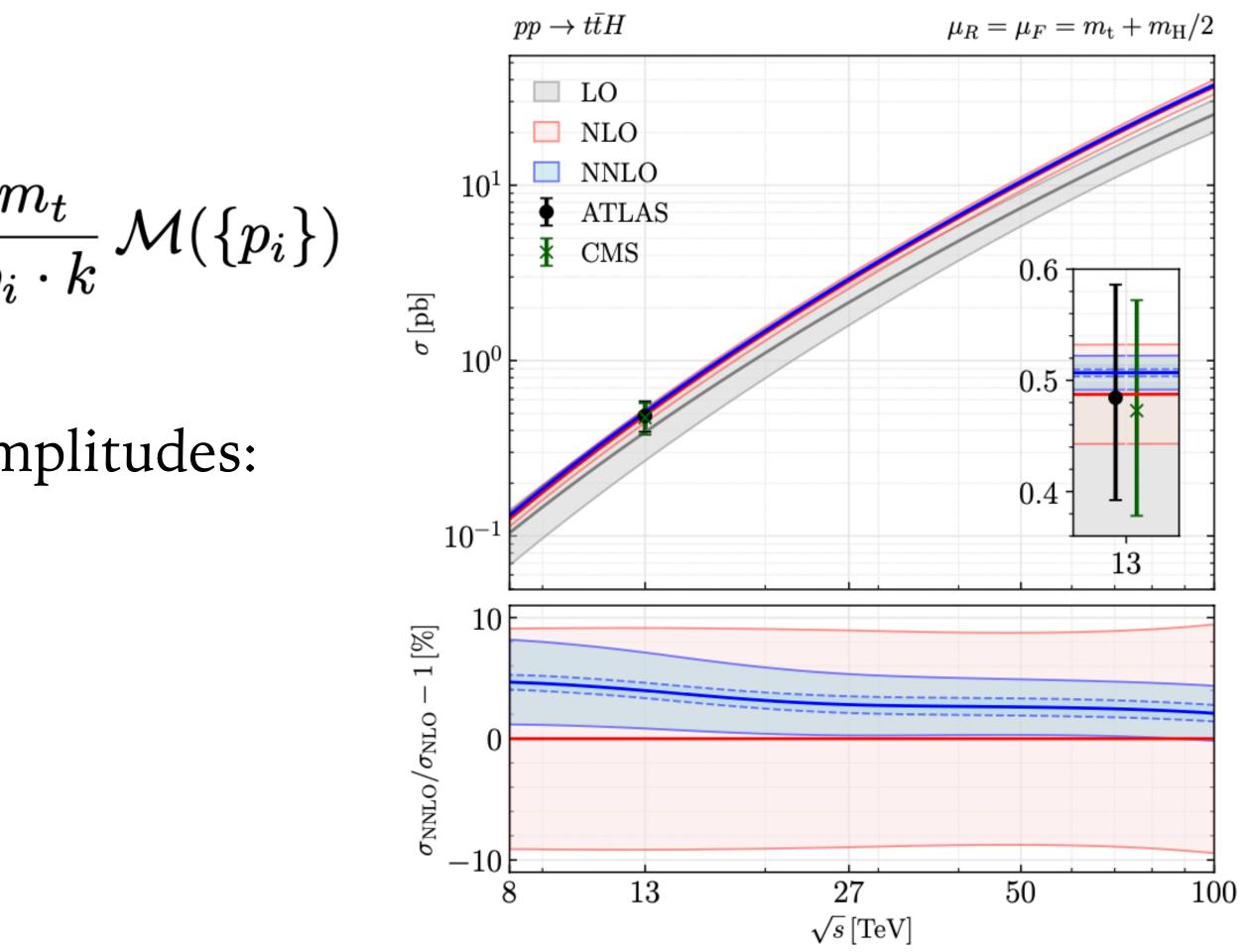
100

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_{\mathrm{S}}(\mu_{\mathrm{R}}); \frac{m_t}{\mu_{\mathrm{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{r}{p_i}$$

Not a good approximation for two-loop amplitudes:

- ► One-loop already 30% error
- ► Two-loop estimated 100% error



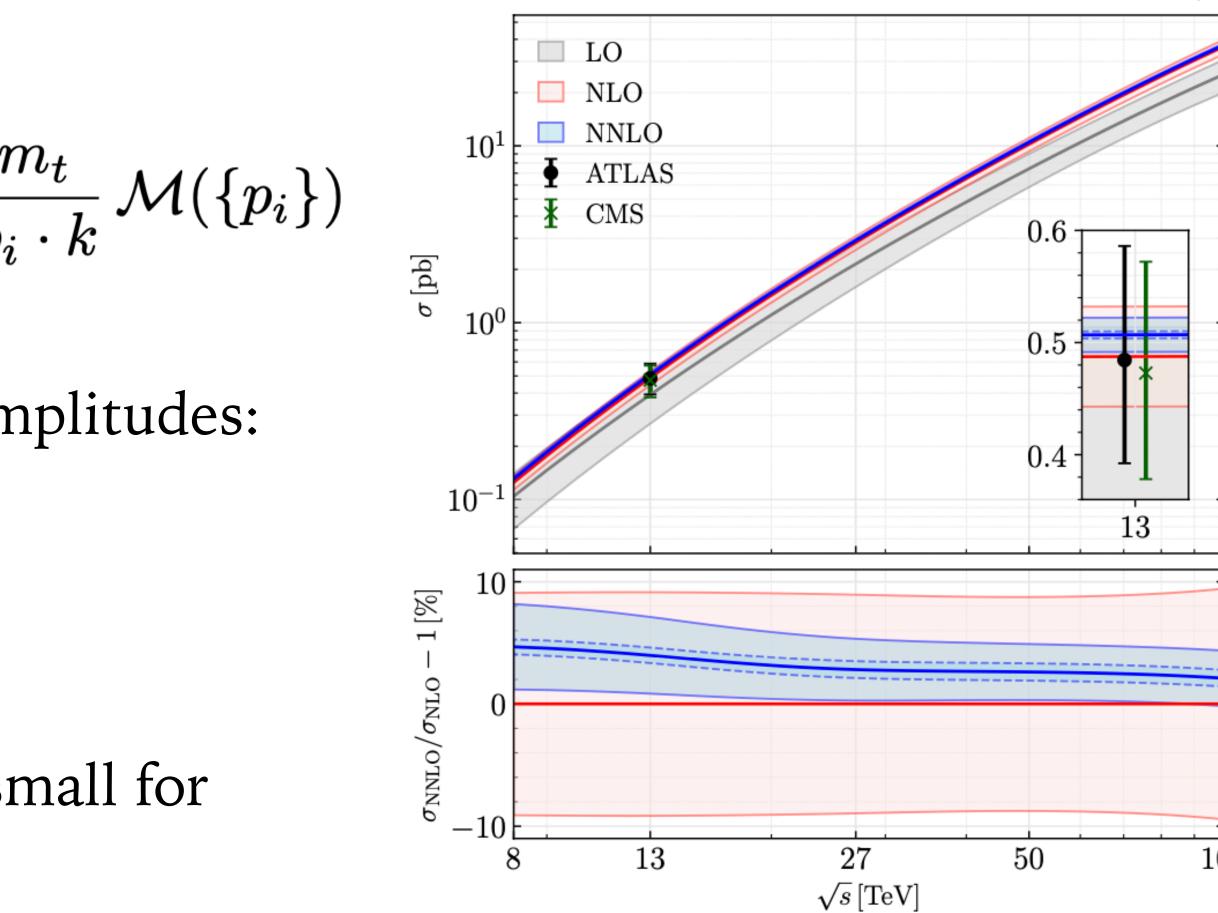
Eikonal approximation: $2 \rightarrow 2$ kinematics

$$\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_{\mathrm{S}}(\mu_{\mathrm{R}}); \frac{m_t}{\mu_{\mathrm{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{r}{p_i}$$

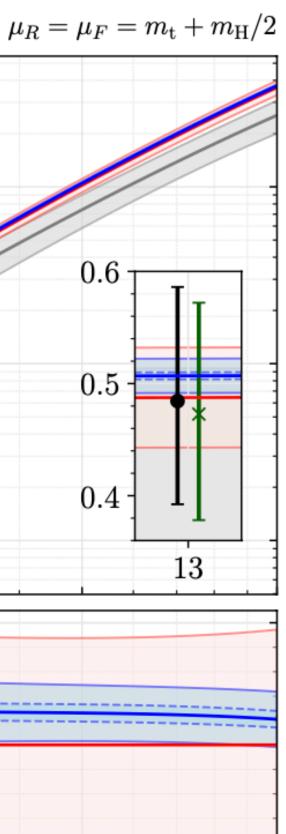
Not a good approximation for two-loop amplitudes:

- ► One-loop already 30% error
- ► Two-loop estimated 100% error

The argument was: two-loop amplitudes small for total cross section



 $pp \to t\bar{t}H$



100

Eikonal approximation: $2 \rightarrow 2$ kinematics

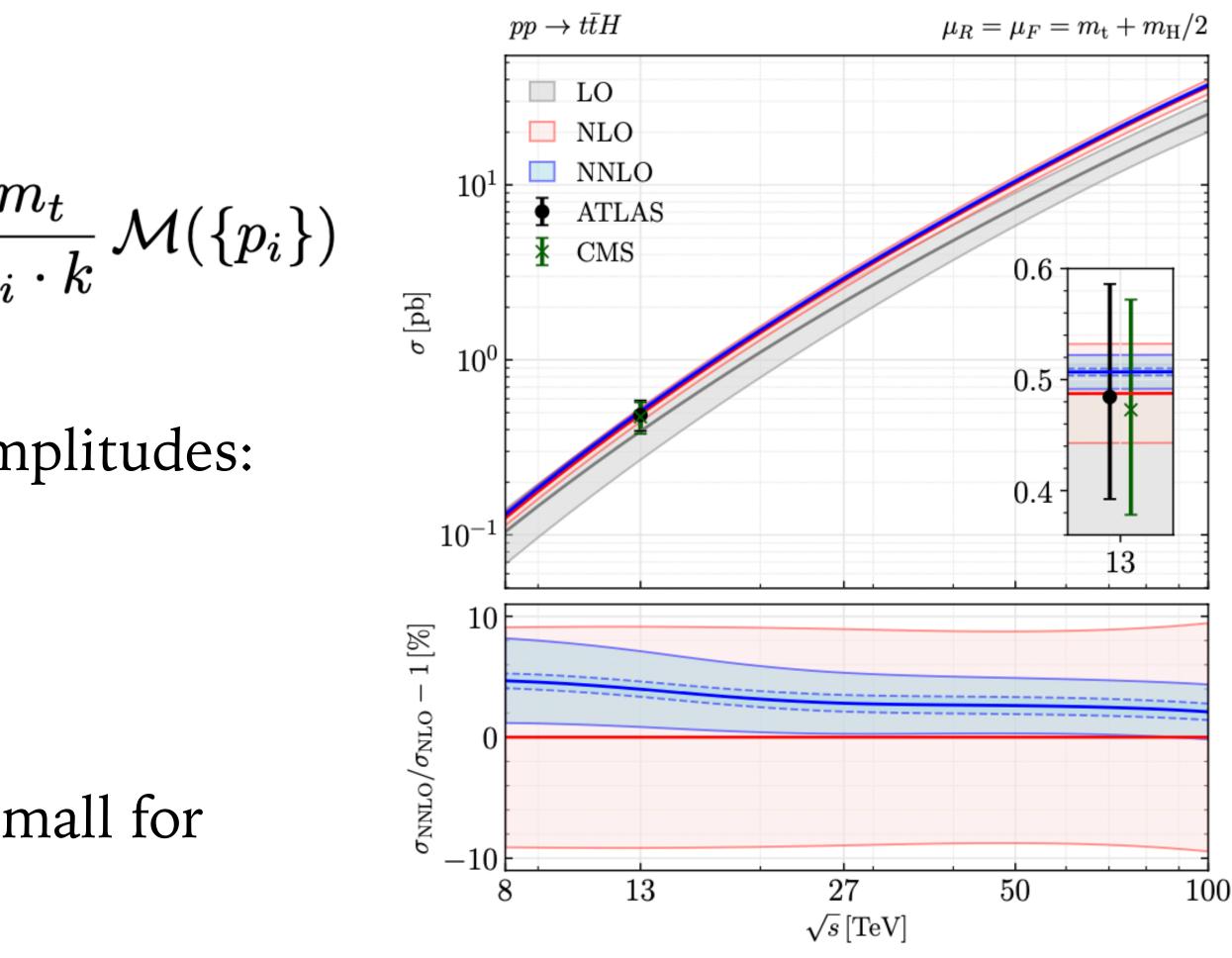
$$\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_{\mathrm{S}}(\mu_{\mathrm{R}}); \frac{m_t}{\mu_{\mathrm{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{r}{p_i}$$

Not a good approximation for two-loop amplitudes:

- ► One-loop already 30% error
- ► Two-loop estimated 100% error

The argument was: two-loop amplitudes small for total cross section

What about differential cross sections?



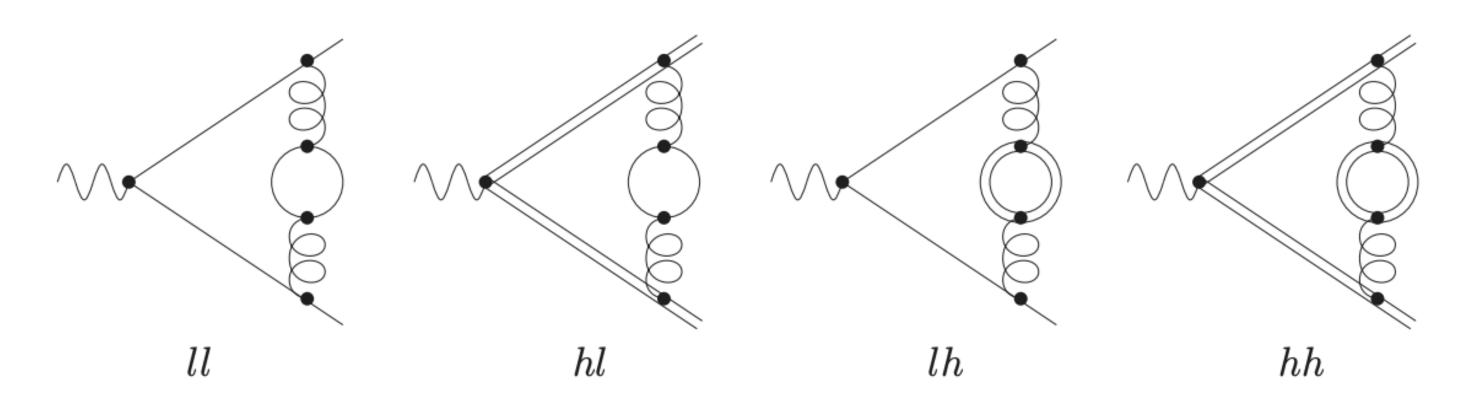
Approximation in the high energy limit

It is known that a massive amplitude can be factorized into a massless amplitude and a collinear factor for each leg in the high-energy limit

Approximation in the high energy limit

It is known that a massive amplitude can be factorized into a massless amplitude and a collinear factor for each leg in the high-energy limit

$$\mathcal{M}^{[p],(m)}\left(\{k_i\}, \frac{Q^2}{\mu^2}, \alpha_{\rm s}(\mu^2), \varepsilon\right) = \prod_{i \in \{\text{all legs}\}} \left(Z^{(m|0)}_{[i]}\left(\frac{m^2}{\mu^2}, \alpha_{\rm s}(\mu^2)\right)\right)$$

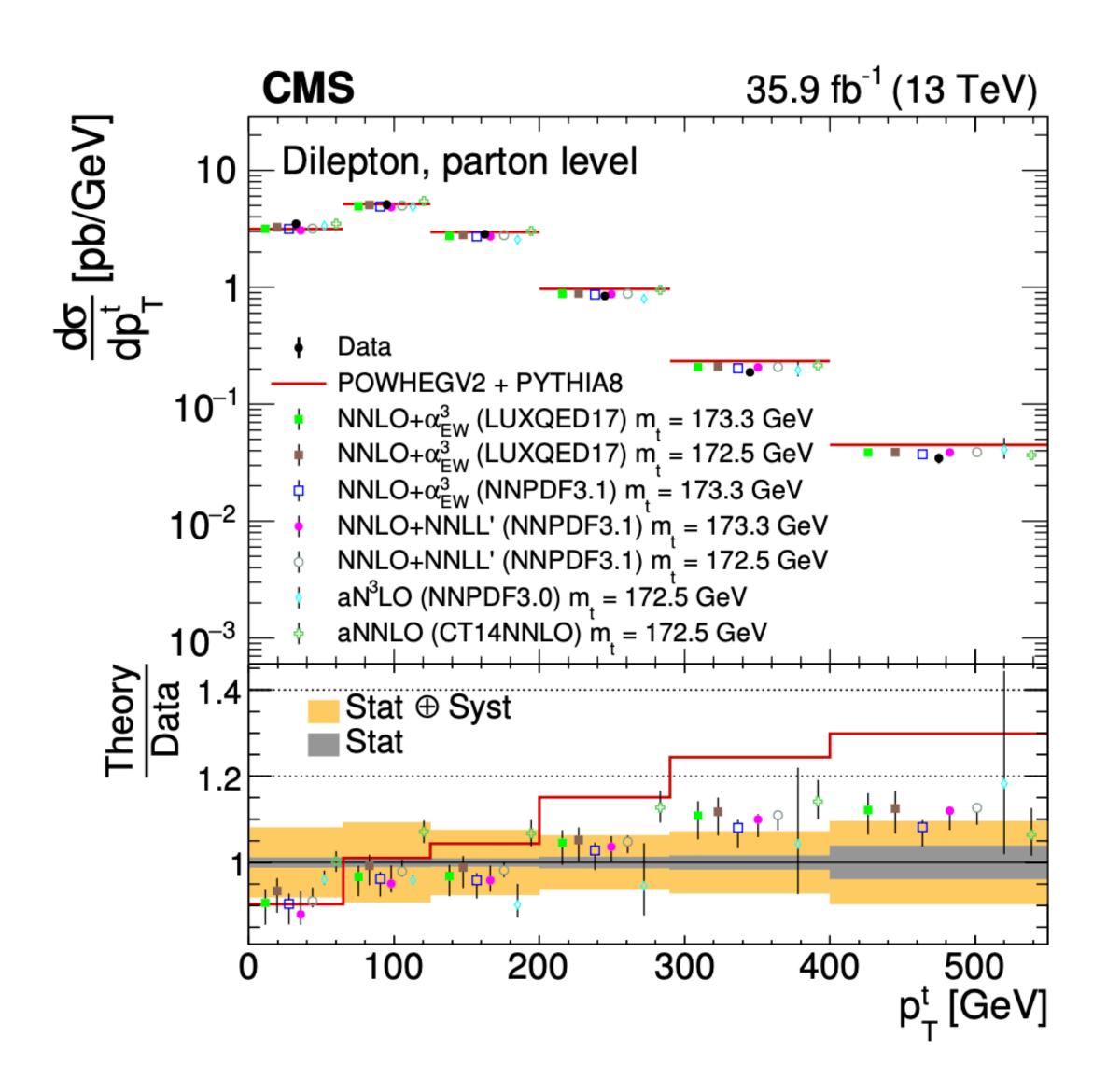


But the heavy-quark bubbles are not included!

Mitov, Moch: hep-ph/0612149

 $(\mathbf{r}), \mathbf{\epsilon} \left(\mathbf{k} \right) \right)^{\frac{1}{2}} \times \mathcal{M}^{[\mathbf{p}], (m=0)} \left(\{k_i\}, \frac{Q^2}{\mu^2}, \alpha_{\mathbf{s}}(\mu^2), \mathbf{\epsilon} \right)$

Top quark pair production

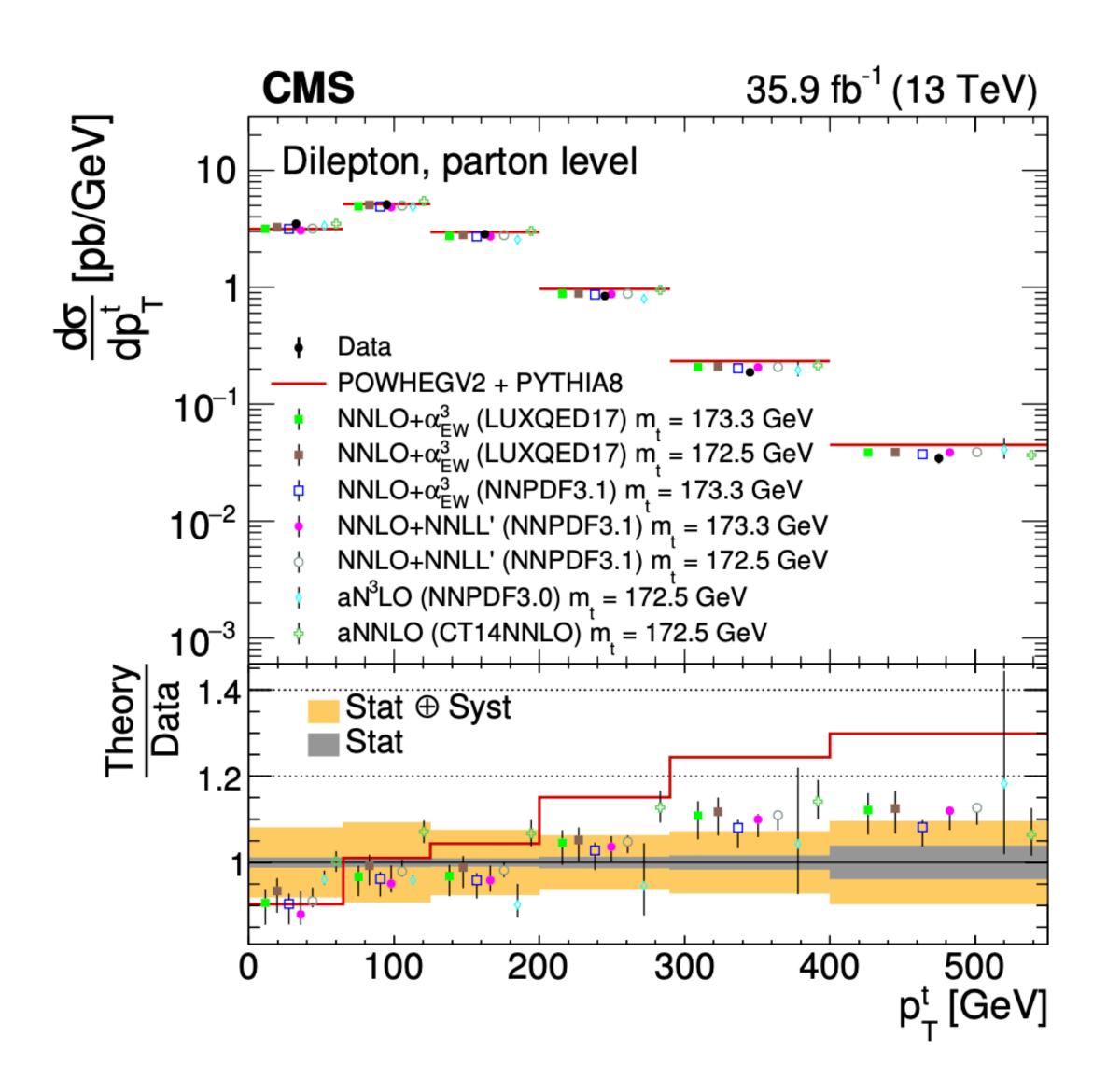


High energy factorization has been applied in the resummation for top quark pair production

1205.3662 1306.1537 1310.3836 1601.07020 1803.07623 1901.08281

Best precision: NNLO+NNLL' in QCD + NLO in EW

Top quark pair production



High energy factorization has been applied in the resummation for top quark pair production

1205.3662 1306.1537 1310.3836 1601.07020 1803.07623 1901.08281

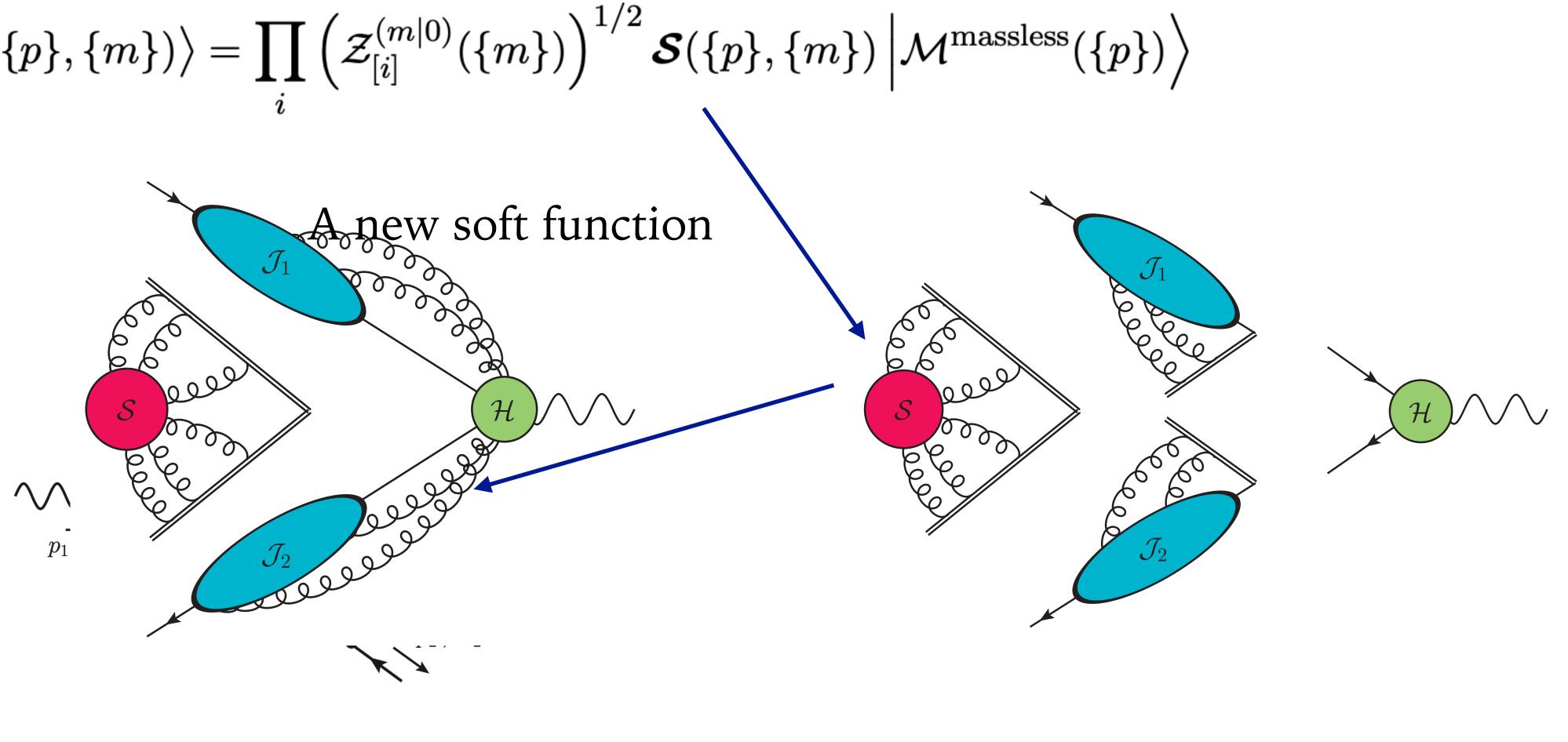
Best precision: NNLO+NNLL' in QCD + NLO in EW

But the factorization of heavy quark bubbles was not understood...

Heavy-quark bubbles

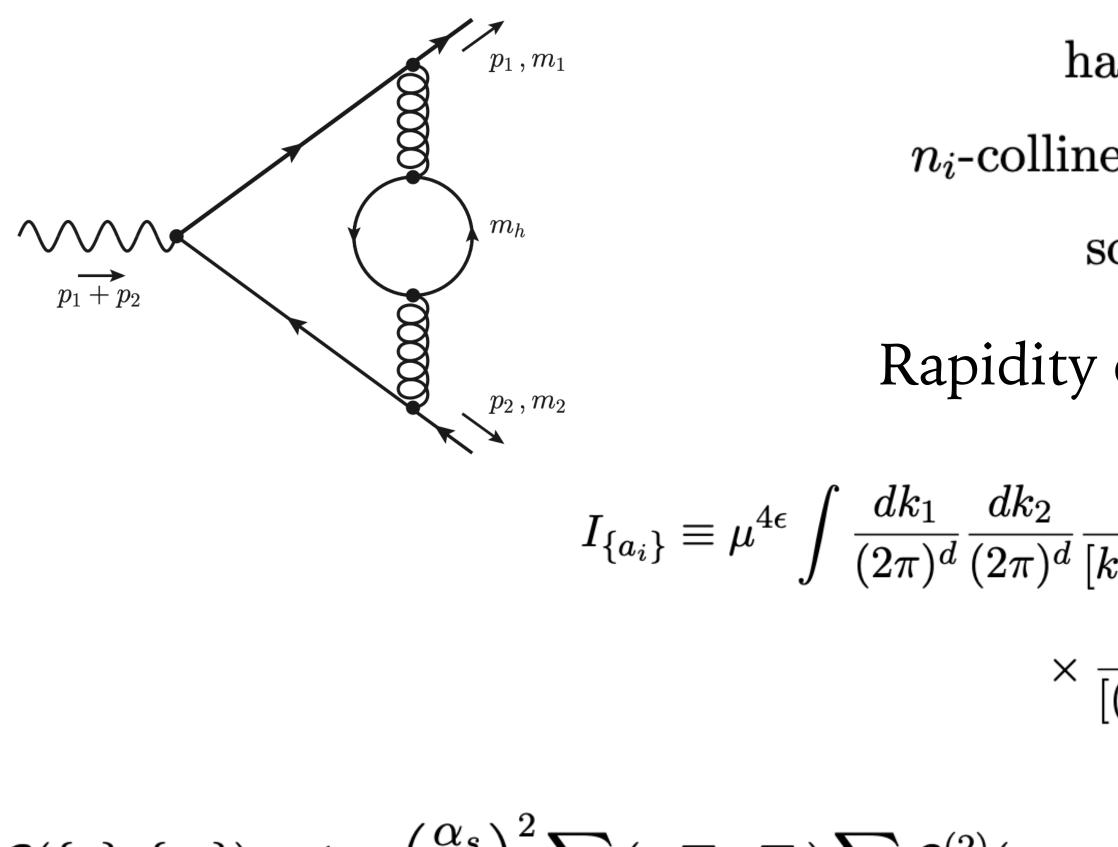
A new factorization formula

$$ig| \mathcal{M}^{ ext{massive}}(\{p\},\{m\}) ig
angle = \prod_i \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})
ight)^{1/2}$$



Wang, Xia, LLY, Ye: 2312.12242

The new soft function



$$\boldsymbol{\mathcal{S}}(\{p\},\{m\}) = 1 + \left(\frac{\alpha_s}{4\pi}\right)^2 \sum_{\substack{i,j\\i\neq j}} \left(-\boldsymbol{T}_i \cdot \boldsymbol{T}_j\right) \sum_h \mathcal{S}^{(2)}(s_{ij},r_i)$$

 $\mathcal{S}^{(2)}(s_{ij},$ "

$$\begin{split} & \text{hard}: k^{\mu} \sim \sqrt{|s|} \,, \\ & n_i \text{-collinear}: (n_i \cdot k, \, \bar{n}_i \cdot k, \, k_{\perp}) \sim \sqrt{|s|} \, (\lambda^2, \, 1, \, \lambda) \\ & \text{soft}: k^{\mu} \sim \sqrt{|s|} \, \lambda \,. \end{split}$$

Rapidity divergence: analytic regulator

$$\frac{1}{k_1^2 - m_h^2]^{a_1}} \frac{1}{[k_2^2 - m_h^2]^{a_2}} \frac{1}{[(k_1 + k_2)^2]^{a_3}} \frac{1}{[(k_1 + k_2 - p_1)^2 - m_1^2]^{a_4}} \\ \frac{(-\tilde{\mu}^2)^{\nu}}{[(k_1 + k_2 + p_2)^2 - m_2^2]^{a_5 + \nu}} \frac{1}{[(k_1 - p_1)^2]^{a_6}} \frac{1}{[(k_1 + p_2)^2]^{a_7}}, \quad (3.4)$$

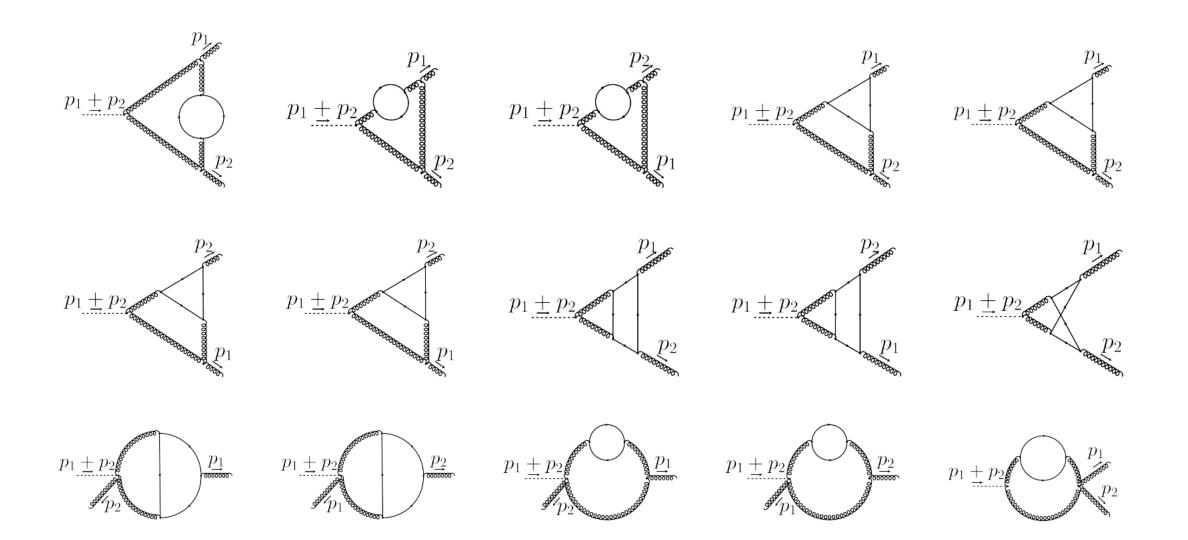
 $m_h^2) + \mathcal{O}(lpha_s^3)$

$$m_h^2) = T_F \left(\frac{\mu^2}{m_h^2}\right)^{2\epsilon} \left(-\frac{4}{3\epsilon^2} + \frac{20}{9\epsilon} - \frac{112}{27} - \frac{4\zeta_2}{3}\right) \ln \frac{-s_{ij}}{m_h^2}$$

242

Validation of the new formula

$$ig| \mathcal{M}^{ ext{massive}}(\{p\}, \{m\}) ig
angle = \prod_i \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})
ight)^{1/2}$$



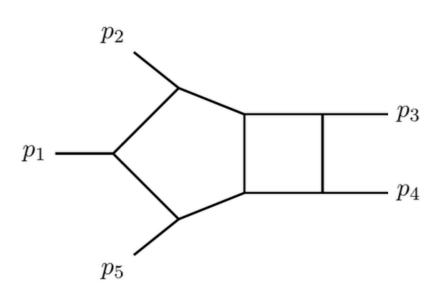
 $\boldsymbol{\mathcal{S}}(\{p\},\{m\}) \left| \mathcal{M}^{\mathrm{massless}}(\{p\}) \right\rangle$

Checked in various situations:

- Quark form factors: heavy-heavy, heavy-light, light-light
- Gluon form factor
- ► Top quark pair amplitude

Two-loop amplitudes for tTH in the high-energy limit

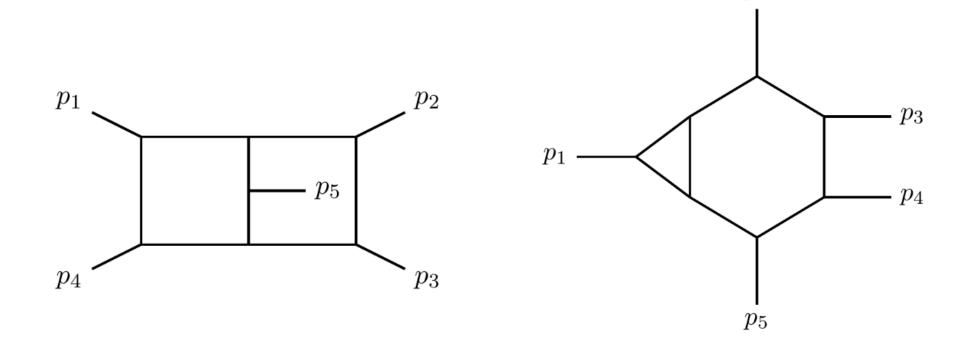
$$ig| \mathcal{M}^{ ext{massive}}(\{p\}, \{m\}) ig
angle = \prod_i \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})
ight)^{1/2}$$



 p_4

(a) planar pentagon-box (PB)

(b) non-planar hexagon-box (HB)

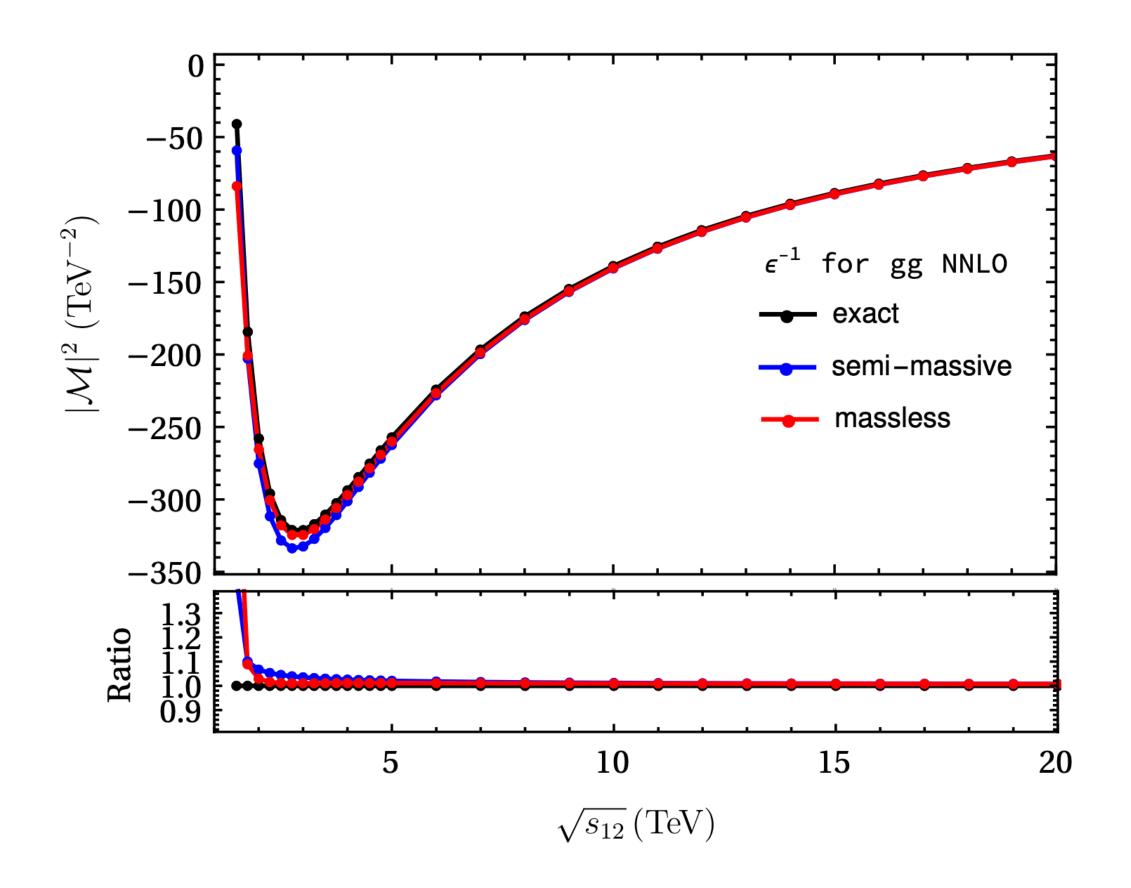


(c) non-planar double pentagon (DP) (d) planar hexagon-triangle (HT) Wang, Xia, LLY, Ye: 2402.00431

 $\left(\boldsymbol{\mathcal{S}}(\{p\},\{m\}) \middle| \mathcal{M}^{\mathrm{massless}}(\{p\})
ight)$

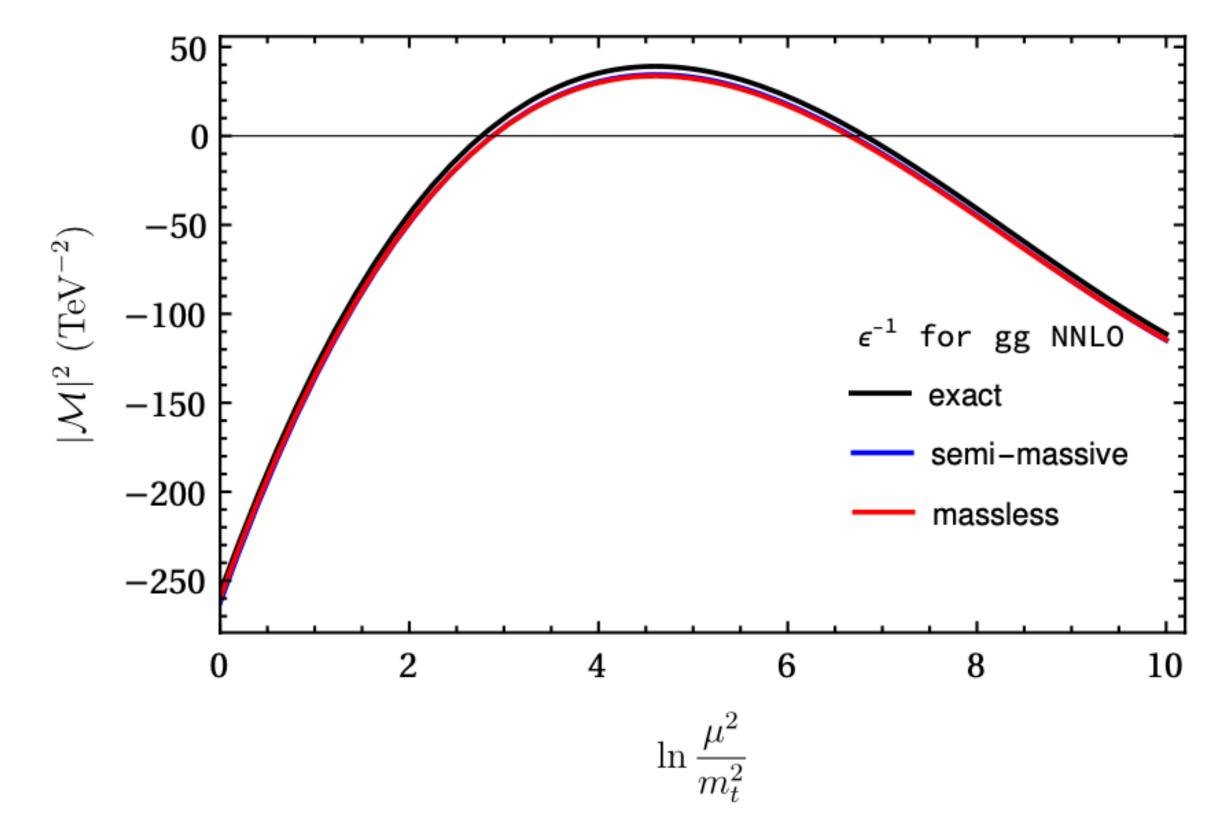
- Massless amplitudes computed using standard techniques
- Very large expressions, simplified using MultivariateApart
- Fast numeric evaluation with PentagonMI

Numerical results

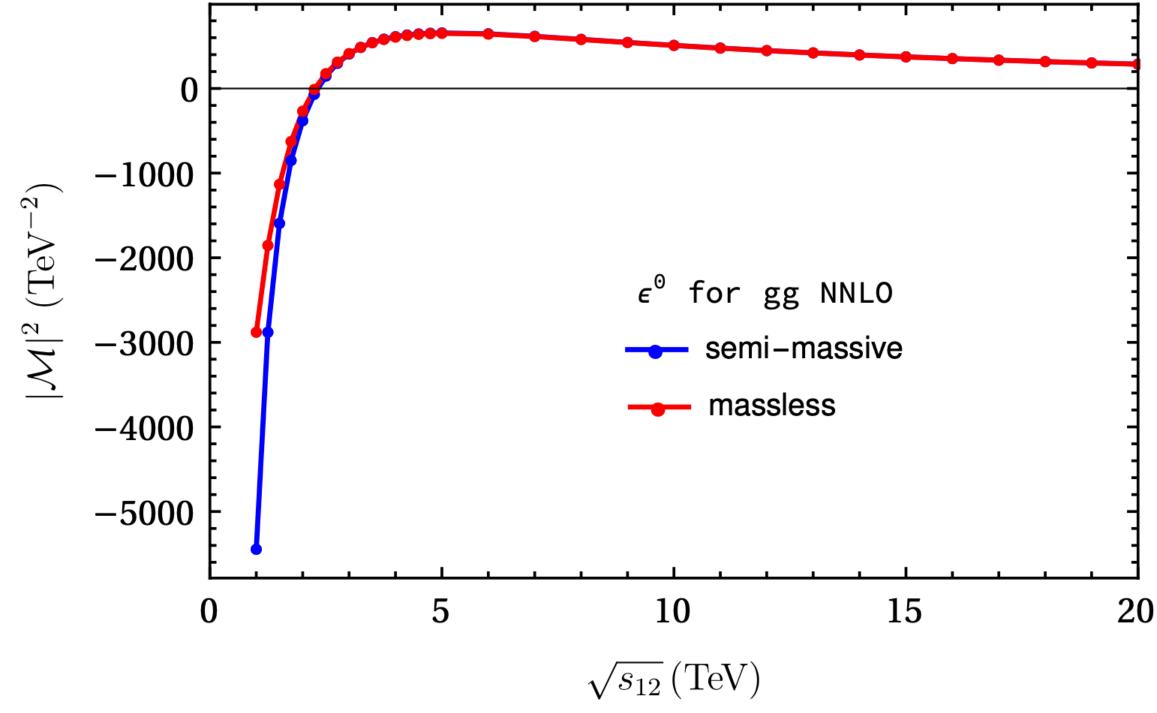


IR poles validated against exact results in Chen, Ma, Wang, LLY, Ye: 2202.02913

Note: without the heavy quark bubble, the scale-dependence would be wrong!



Numerical results



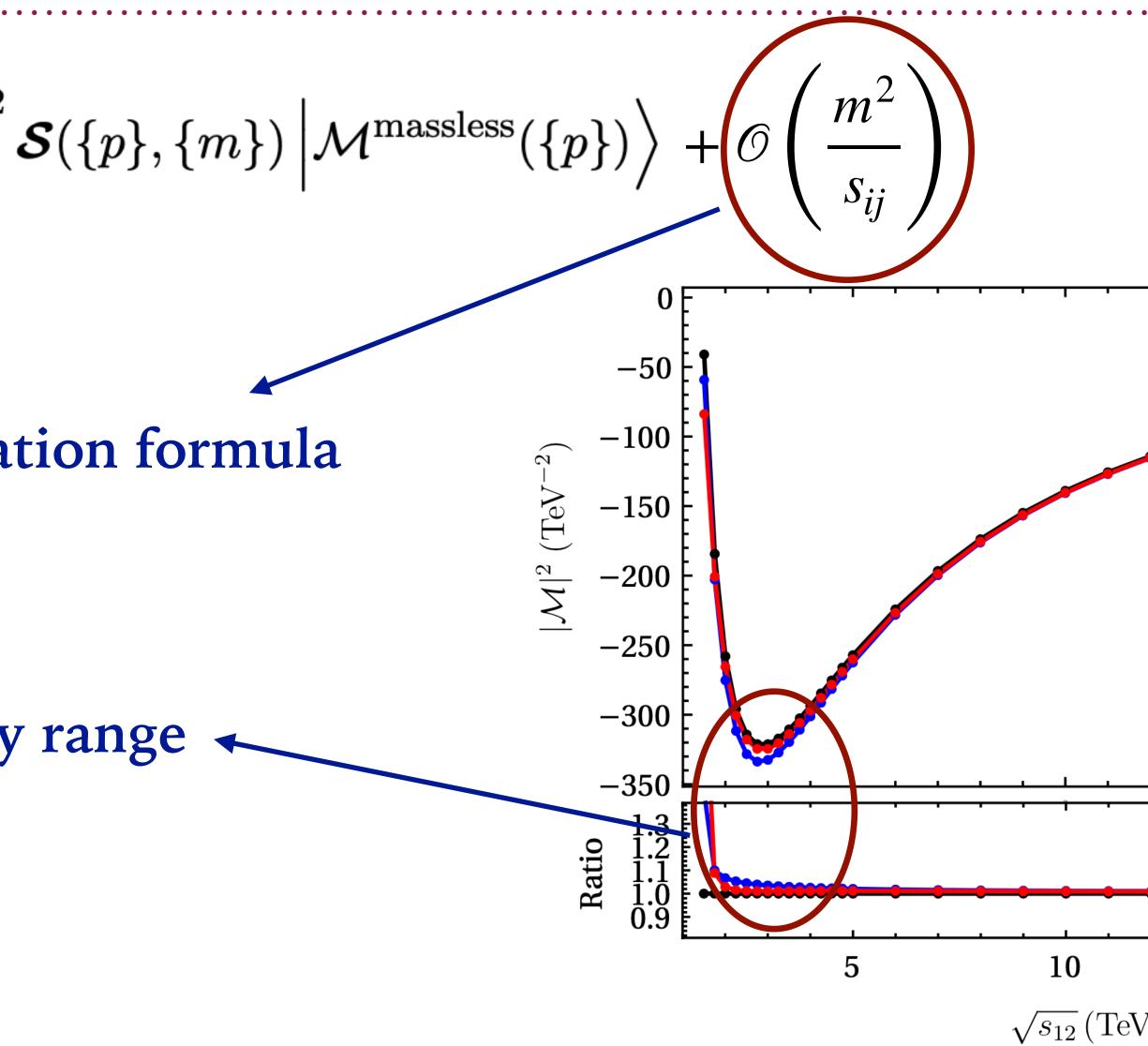
- Two-loop amplitudes at high energies are ready
- Combine with low energy approximations (threshold / soft Higgs)?
- Differential cross sections (IR subtraction)?

Towards sub-leading factorization

$$ig| \mathcal{M}^{ ext{massive}}(\{p\}, \{m\}) ig
angle = \prod_i \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})
ight)^{1/2}$$

Power corrections to the factorization formula

Important for intermediate energy range

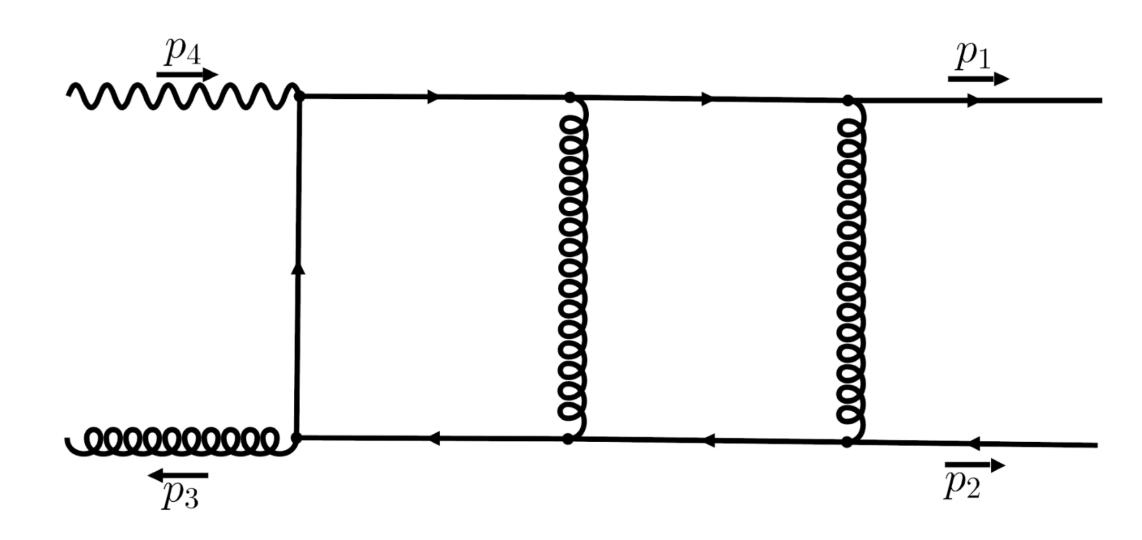


• • •	• •		
-	-	-	
	e	-1	fo
	_	•	e
	-	•	Se
	-		• m
		-	
7)			15
7)			
17			

Towards sub-leading factorization

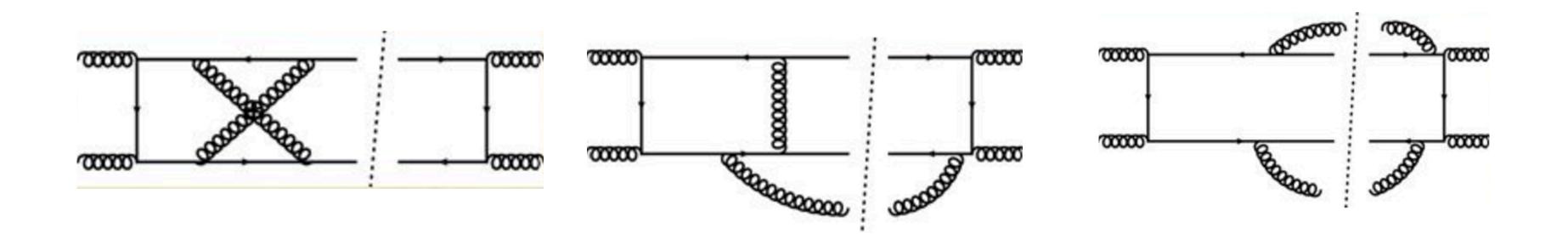
$$\left|\mathcal{M}^{ ext{massive}}(\{p\},\{m\})
ight
angle = \prod_{i} \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})
ight)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{ ext{massless}}(\{p\})
ight
angle + \mathcal{O}\left(rac{m^2}{s_{ij}}
ight)$$

Ongoing: analyzing sub-leading corrections in $1 \rightarrow 3$ form factors using two methods



- Small-mass expansion
- Method of regions

For the NNLO cross section, we need to combine three contributions: double virtual, virtual+real and double real



One may employ Q_T subtraction, originally designed for colorless final states

$$d\sigma_{\rm NNLO} = d\sigma_{\rm NNLO}^{Q_T \to 0} + \left(d\sigma_{\rm NLO}^{1-\rm jet} - d\sigma_{\rm N}^{\rm C} \right)$$

Catani, Grazzini, hep-ph/0703012 TLO

Described by a factorization formula in the small Q_T limit

The Q_T factorization formula for colored final-states Zhu, Li, Li, Shao, LLY: 1208.5774, 1307.2464

Universal beam functions, NNLO available Gehrmann, Lübbert, LLY: 1209.0682, 1403.6451

> Process-dependent soft functions Partial NNLO analytic results in Liu, Monni: 2411.13466

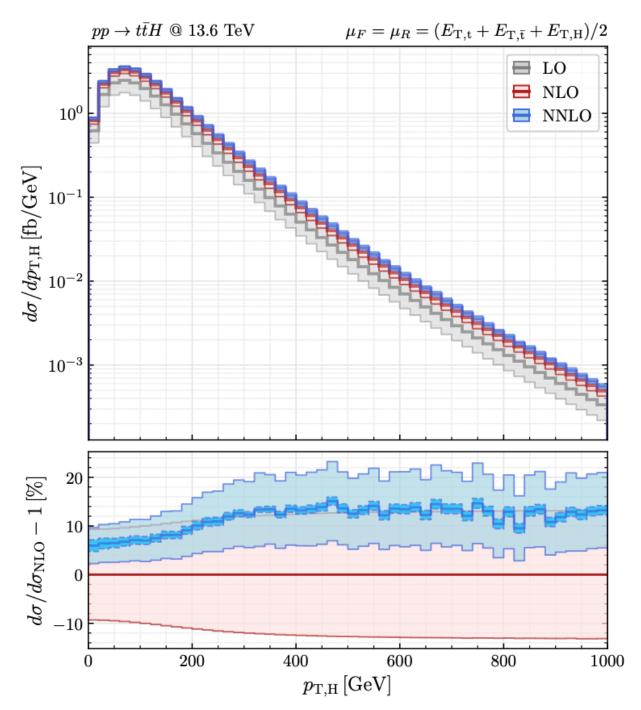
 $d\sigma \sim B_i \otimes B_j \otimes S_{ij} H_{ij} + \mathcal{O}(Q_T^2/Q^2)$

Hard functions, from our calculation

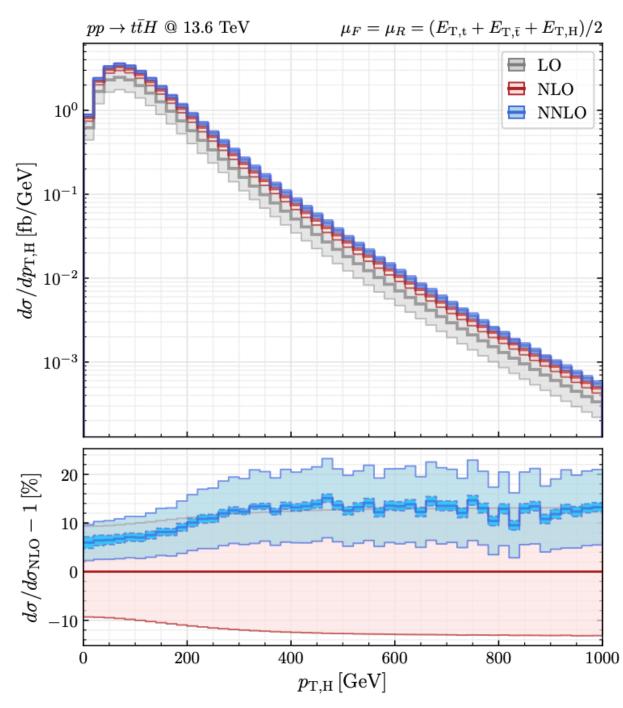
· · · · ·

1

A parallel study in Devoto et al.: 2411.15340



A parallel study in Devoto et al.: 2411.15340



- Only the leading color part, but sub-lead negligible according to our study
- ► Remains to see the effects at the level of

	• • • • •	• • • • • • • • •		• • • • • • • • •	• • • • • • • • •	• • • • • • • •	•
	exact semi-	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0	
40		6.189970	-38.61149	185.2507	-502.3539		
TU	A^g	6.140920	-38.20303	180.8479	-466.0329	277.4175	
Leading color	B^g	-9.662043	07.19105	-304.2190	2004.419		
		-9.528888	66.04951	-485.4858	2302.867	-8009.039	
	C^{g}		-26.39205	137.5097	122.64.92		
			-26.08095	129.1071	-282,4970	-363.2452	
	D^g			5.872808	-190.6910		
				5.665436	-179.9663	1016.432	
	E_l^g		-7.221632	30.41847	-83.58398		
			-7.164407	30.11041	-81.90409	122.4383	
	E_h^g			-7.090949	55.10048		
	L_h			-0.2277007	7.477590	-38.94969	
	F_l^g		11.27238	-51.40444	145.7744		
			11.11704	-50.54900	139.8451	-187.9518	
	F_h^g			13.78273	-106.0896		
	^ h				-10.76121	124.8742	
Sub-leading color -	G_l^{θ}			13.19603	-19.72861		
Sub-icauing color				13.04047	-17.39200	-19.68276	
	G_h^g				18.82390		
						-16.44998	
	H_l^g			1.375549	-1.554947		
				1.364649	-1.537369	1.772607	
	H^g_{lh}				2.363650		
					0.07590022	-1.707018	
	H_h^g						
-leading terms not						0.2450480	
icading terms not	I_l^g			-2.147121	2 581333		
				-2.117531	2.332773	-2.311413	
	I^g_{lh}				-4.594245		
vel of cross sections						3.483198	
	I_h^g						
	- h						
	Total	4.316971	-34.94825	146.5483	-257.9766		
		4.288068	-34.65125	145.6813	-275.2426	-381.0666	

Summary and outlook

- ► The tTH production is important for probing the top quark Yukawa coupling
- Towards NNLO prediction at high energies
 - ► Two-loop IR poles
 - ► High energy factorization formula for QCD amplitudes
 - Applied to tTH production: approximate two-loop amplitudes
 - ► Future: sub-leading corrections to the factorization formula
 - ► Future: combine with real emissions for NNLO cross sections
- ► A complete two-loop calculation? Requires new integral reduction techniques!

bing the top quark Yukawa coupling

Summary and outlook

- > The tTH production is important for probing the top quark Yukawa coupling
- Towards NNLO prediction at high energies
 - ► Two-loop IR poles
 - High energy factorization formula for QCD amplitudes
 - > Applied to tTH production: approximate two-loop amplitudes
 - Future: sub-leading corrections to the factorization formula
 - ► Future: combine with real emissions for NNLO cross sections
- > A complete two-loop calculation? Requires new integral reduction techniques!

Thank you!

