Higgs Potential 2024 December 19 - 23, 2024, University of Science and Technology of China (Hefei)

Higgs cross section measurements in the four-lepton final state using 2022 data at CMS

Tahir Javaid (Beihang University, Beijing)

On behalf of the CMS collaboration

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

Outline

***Overview**

***Higgs differential cross section**

measurement

- Strategy
- Results

***Summary**

Overview

*Higgs boson discovered in 2012 at CERN (LHC Run1)

*LHC **Run2 and Run3** being eras of precision measurements

*Its properties have been measured with evolving precision since the discovery

- Couplings, cross-section and etc.

*Several decay modes studied so far.

Recent results from CMS

Decay Channel	CMS data	Results
	Full Run2	Inclusive, differential (1D, 2D)
H → ZZ → 4ℓ	Early Run3 (2022)	Inclusive, diffferential (1D)

Overview: Higgs Production at LHC

*Significant increase in production cross sections from 8 TeV (Run1 2012) to 13.6 TeV (Run3)

 $\sigma_{13.6 TeV}$ of:

- $\sigma_{8 TeV}$
- Higgs production $\approx 2.95 (ggH)$, $\approx 2.27 (VBF)$, $\approx 1.92 (VH)$ and $\approx 3.92 (ttH)$
- Background ≈ 2.35 (*Irreducible*) and ~ 2.5 (*Reducible*)

Tahir Javaid

Higgs Potential 2024

Overview: $H \rightarrow ZZ^* \rightarrow 4\ell$ decay mode and its motivation

 $*\sigma \times Br (H \to ZZ^* \to 4\ell)$ is quite small

- Needs highest selection efficiency possible
- Efficient lepton identification over a broad p_T range

*Event Signature:

• 4 leptons (4e, 4 μ , 2 $e2\mu$)

• Large
$$\frac{S}{B}$$
 ratio (> 2 : 1)

- Good mass resolution ($\sim 1 2\%$)
- Four isolated leptons from one point in 3D space

*Benefits from excellent electron and muon energy resolution

Object Selection: Electrons

*Kinematic cuts

• $p_T > 7 \ GeV$ and $|\eta| < 2.5$

*Vertex cuts

• $d_{xv} < 0.5 \ cm, \ d_Z < 1 \ cm, \ |SIP_{3D}| < 4$

Tahir Javaid

Higgs Potential 2024

*Identified and isolated by means of XGBoost classifier algorithm

 a switch from particle based isolations to cluster based isolations

Object Selection: Electrons efficiency measurement (Tag and Probe Method)

*Kinematic cuts

• $p_T > 7 \ GeV$ and $|\eta| < 2.5$

*Vertex cuts

• $d_{xv} < 0.5 \ cm, \ d_Z < 1 \ cm, \ |SIP_{3D}| < 4$

Tahir Javaid

Higgs Potential 2024

*Identified and isolated by means of XGBoost classifier algorithm

 a switch from particle based isolations to cluster based isolations

Object Selection: Muons

*Kinematic cuts

• $p_T > 5 \ GeV$ and $|\eta| < 2.5$

*Vertex cuts

• $d_{xy} < 0.5 \ cm, \ d_Z < 1 \ cm, \ |SIP_{3D}| < 4$

*Loose muons

- PF muon ID and tracker high p_T ID *****Isolation
 - $\mathscr{I}^{\mu}_{\rm PF} \; (\Delta R = 0.3) < 0.35$
 - Isolation is $\Delta\beta$ PU corrected and applied after FSR recovery
 - "Ghost-cleaning" step performed

Object Selection: Muons efficiency measurement (Tag and Probe Method)

*Kinematic cuts

• $p_T > 5 \ GeV$ and $|\eta| < 2.5$

*Vertex cuts

• $d_{xv} < 0.5 \ cm, \ d_Z < 1 \ cm, \ |SIP_{3D}| < 4$

*Loose muons

- PF muon ID and tracker high p_T ID *****Isolation
 - $\mathscr{I}^{\mu}_{\rm PF} \; (\Delta R = 0.3) < 0.35$

University of Science and Technology of China, Hefei

Background estimation

K Irreducible Background

- Production of ZZ via qq annihilation or gluon fusion
- Estimated using simulation \bullet
- *****Reducible Background
 - Secondary leptons produced by heavy flavor jets
 - Z + jets, tt + jets, WZ, $Z\gamma^*$, ...
 - Misidentified leptons coming from decays of heavy flavor hadrons, in-flight decays of light mesons within jets, or (for electrons) the decay of charged hadrons overlapping with π^0 decays
 - Estimated using data
 - Fake Factor method

Analysis strategy: Cross section measurements in fiducial phase space

*Necessary as cceptance has a strong model dependence

Between SM production modes by up to 60%

*Fiducial measurements have a key role

- Higgs cross sections can be measured in model independent way
- the extrapolation of the result is limited to a restricted phase space defined close as possible to the experimental selection
 - Minimizes the theoretical assumption for extrapolation to full phase space
 - Easy comparison with different theories

Signal process	$\mathcal{A}_{ ext{fid}}$	ϵ	f _{noi}
Indi	vidual H boson	production mod	les
ggH	0.408 ± 0.001	0.625 ± 0.001	0.059 ±
VBF	0.456 ± 0.001	0.645 ± 0.002	0.043 ±
WH	0.353 ± 0.001	0.604 ± 0.001	0.113 ±
ZH	0.346 ± 0.001	0.620 ± 0.001	0.136 ±
tŦH	0.355 ± 0.001	0.603 ± 0.002	0.252 ±

Analysis strategy: Cross section measurements in fiducial phase space

*Necessary as cceptance has a strong model dependence

Between SM production modes by up to 60%

*Fiducial measurements have a key role

- Higgs cross sections can be measured in model independent way
- the extrapolation of the result is limited to a restricted phase space defined close as possible to the experimental selection
 - Minimizes the theoretical assumption for extrapolation to full phase space
 - Easy comparison with different theories

Requirements for the H \rightarrow 4 ℓ fiducial	phase space
Lepton kinematics and isolation	on
leading lepton $p_{\rm T}$	$p_{\rm T} > 20 {\rm Ge}$
next-to-leading lepton $p_{\rm T}$	$p_{\rm T} > 10 {\rm Ge}$
additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5)~{ m Ge}$
pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$
$p_{\rm T}$ sum of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 \cdot p_{\mathrm{T}}$
Event topology	
existence of at least two SFOS lepton pairs, where leptons s	satisfy criteria above
inv. mass of the Z_1 candidate	$40\text{GeV} < m(\text{Z}_1) <$
inv. mass of the Z_2 candidate	$12\text{GeV} < m(\text{Z}_2) <$
distance between selected four leptons	$\Delta R(\ell_i \ell_j) > 0.02$ for
inv. mass of any opposite sign lepton pair	$\mathbf{m}(\ell^+\ell'^-) > 4$
inv. mass of the selected four leptons	$105\mathrm{GeV} < m_{4\ell} <$
the selected four leptons must originate from the H $\rightarrow 4\ell$ d	lecay

Analysis strategy: Event selection and reconstruction

- *Loose leptons (electrons and muons)
- *Event is required to trigger on at least one of listed HLT paths
- ∗Z candidates: any OS-SF pair that satisfies: $12 < m_{\ell \ell}(\gamma) < 120 \frac{GeV}{c^2}$
- *ZZ candidates: built by defining Z_1 candidate with $m_{\ell\ell}(\gamma)$ closest to PDG Z-boson mass:
 - $m_{Z_1} > 40 \, {\rm GeV}/c^2$
 - $p_T(\ell_1) > 20 \text{ GeV}, p_T(\ell_2) > 10 \text{ GeV}$
 - $\Delta R(\eta, \phi) > 0.02$ between each of the four leptons
 - $m_{4\ell} > 4 \,\text{GeV}/c^2$ for OS pairs
 - Reject 4μ and 4e candidates where the alternate pairing $Z_a Z_b$ satisfies:

-
$$|m_{Z_a} - m_Z| < |m_{Z_1} - m_Z|$$
 AND $m_{Z_b} <$
 $*m_{4\ell} > 70 \,\text{GeV}/c^2$

* If multiple Z_2 s are present, the one with largest p_T sum of the leptons is retained

Analysis strategy: Fit procedure

*Measured by performing a maximum likelihood fit of the signal and background parameterisations to the observed 4ℓ mass distribution

Probability density function for resonant, non-resonant and background

on				
	•	r		
	1		I	

Process	4e	4μ	2e2µ	
Signal(<i>m_H</i> =125.38 GeV)	$10.79^{+0.81}_{-1.44}$	$11.74\substack{+0.21 \\ -0.26}$	$30.54^{+1.56}_{-2.63}$	53.
nonfid	$0.35\substack{+0.03 \\ -0.05}$	$0.26\substack{+0.00\\-0.01}$	$0.32\substack{+0.02 \\ -0.03}$	0.9
nonres	$0.11\substack{+0.01 \\ -0.02}$	$0.22\substack{+0.00\\-0.00}$	$0.33\substack{+0.02 \\ -0.03}$	0.6
Total signal	$11.25\substack{+0.85 \\ -1.50}$	$12.22\substack{+0.22\\-0.27}$	$31.19\substack{+1.59 \\ -2.69}$	54.
qqZZ	$13.25\substack{+1.06 \\ -1.96}$	$33.13^{+1.80}_{-1.78}$	$38.70^{+2.41}_{-4.06}$	85.
ggZZ	$1.89\substack{+0.22\\-0.34}$	$3.90\substack{+0.46 \\ -0.40}$	$3.95\substack{+0.44 \\ -0.56}$	9.7
ZX	$4.34\substack{+1.20 \\ -1.54}$	$14.23\substack{+6.49\\-2.22}$	$17.16\substack{+3.27 \\ -3.60}$	35.
Sum of backgrounds	$19.48\substack{+1.47 \\ -2.97}$	$51.26\substack{+7.65 \\ -2.30}$	$59.80\substack{+3.89\\-5.84}$	130
Total expected	$30.72^{+2.10}_{-4.29}$	$63.48^{+7.73}_{-2.36}$	$90.99\substack{+4.67\\-8.03}$	185.

Results: Inclusive cross section

*Most relevant systematic: Electron efficiency *Measured inclusive cross section

 $\sigma_{\text{fid}} = 2.94^{+0.53}_{-0.49} \text{ (stat.)}^{+0.29}_{-0.22} \text{ (syst.) fb}$

Tahir Javaid

Measurements per lepton category consistent with each other

Results: Differential cross section

* Fiducial differential cross sections are measured in bins of some variables (e.g. Higgs kinematics, jet properties, decay variables)

* Two variables studied: p_T^H , $|y^H|$ (coarse binning w.r.t. Run2)

- In agreement with SM
- Systematics dominated by Electron efficiency ullet

* Full Run 3 dataset \rightarrow more granular binning expected

Tahir Javaid

Higgs Potential 2024

 $H \rightarrow ZZ \rightarrow 4\ell$

CMS-PAS-HIG-24-013

Results: Differential cross section

* Fiducial differential cross sections are measured in bins of some variables (e.g. Higgs kinematics, jet properties, decay variables)

* Two variables studied: p_T^H , $|y^H|$ (coarse binning w.r.t. Run2)

- In agreement with SM
- Systematics dominated by Electron efficiency ullet

* Full Run 3 dataset \rightarrow more granular binning expected

Tahir Javaid

Higgs Potential 2024

 $H \rightarrow ZZ \rightarrow 4\ell$

CMS-PAS-HIG-24-013

17

Summary

*Presented the <u>recent</u> Higgs cross section results measured in

 $H \rightarrow ZZ \rightarrow 4\ell$ decay channel

- Inclusive and differential measurements reported
- Early Run3 data from CMS (34.7 fb^{-1})
 - See backup slides for recent Run 2 results (138 fb^{-1})

*Full Run 3 data would provide us the opportunity to explore more fine granularity to such measurements (for extensive set of 1D and 2D observables, interpretations, combinations,)

- 2023 + 2024 recorded data already been <u>certified</u> by CMS (136.16 fb⁻¹)
- Luminosity expected in 2025 + 2026 up to $220 fb^{-1}$

CMS Integrated Luminosity, pp, 2023, $\sqrt{s}=$ 13.6 TeV

Inank

BACKUP SLIDES

Tahir Javaid

Higgs Potential 2024

Strategy for Run3 analyses release

Short term (during 2025) Medium term (from Moriond26): include 2024 data (for as many analyses as possible) : full Run3 Long term (from Moriond27)

: 2022+2023 publications (possibly in combination with Run2)

Mattermost CMS week - 9 December 2024 - 22

 $H \rightarrow ZZ \rightarrow 4\ell$ Full Run2 strategy and results

Event selection and reconstructions

*****Z candidate

• Any OS-SF pair that satisfies $12 < m_{ll(\gamma)} < 120$ GeV *Build all possible ZZ candidates defined as pairs of non-overlapping Z candidate; define Z_1 candidate with $m_{ll(\gamma)}$ closest to the PDG m(Z) mass • $m_{Z1} > 40 \text{ GeV}; P_T(l1) > 20 \text{ GeV}; P_T(l2) > 10 \text{ GeV}$ • $\Delta R > 0.02$ between each of the four leptons $\bullet m_{11} > 4$ GeV for OS pairs (regardless of flavor) • Reject 4μ and 4e candidates where the alternative pair $Z_a Z_b$ satisfies $\left| m_{Za} - m_{Z} \right| < \left| m_{Z1} - m_{Z} \right|$ and $m_{Zb} < 12 \text{ GeV}$ • $m_{41} > 70 \text{ GeV}$

*If more than one ZZ candidate is left, take the one with Z₁ mass closest to m₇ and the Z_2 from the candidates whose lepton give higher pT sum.

 Z_1 \mathbb{Z}_2

EPJC81(2021)488

23

Background Estimation

- *Irreducible background
 - Production of ZZ via $q\bar{q}$ annihilation or gluon fusion
 - Estimated using simulation

*Reducible background

- Light flavor hadrons misidentified as leptons
- Heavy flavor jets produce secondary leptons through the decay of heavy flavor mesons
- Two independent methods used to estimated Z+X background: OS and SS
 - Fake rates calculated in Z+I control region
 - Z+X yields estimated in orthogonal regions of Z+II control region
 - Final estimate combination of 2 methods
- Templates are built from the control regions in data

EPJC81(2021)488

Systematic Uncertainties

*Experimental uncertainties	
alntaaratad luminasity	Th
entegrated lumitosity	reo
• Lepton identification and reconstruction efficiency \rightarrow	rar
Reducible background	- 4
•Lepton scale and resolution	- 4
Iet energy scale	Αı
*Theoretical uncertainties	the
Theoretical uncertainties	ac
• QCD uncertainty from renormalization and	
factorization scale	
Our of the Choice of PDF set is determined	
following the PDF4LHC recommendations	
• Uncertainty of 2% on H → 4I branching ratio	
affects only signal yields	

	EPJC81(2021)488
ha uncortaintica of lantan	Summary of inclusive theory uncertai
le uncertainties of lepton	QCD scale (gg) ±
econstruction and selection	PDF set (gg) \pm
c .	$gg \rightarrow ZZ$ k-factor (gg) \pm
inge for	QCD scale ($q\bar{q} \rightarrow ZZ$) +3.2/
$4u$ channel $0.9 \pm 0.0/$	PDF set $(q\bar{q} \rightarrow ZZ)$ +3.1
4μ channel 0.8 - 1.9%	Electroweak corrections ($q\bar{q} \rightarrow ZZ$) \pm
4e channel 6 5 - 11%	QCD scale (VBF) +0.4
	PDF set (VBF) \pm
	QCD scale (WH) +0.5
	PDF set (WH) \pm
reduction of about 5% in	QCD scale (ZH) +3.8
a la unacrtaintica thanks to	PDF set (ZH) \pm
ie 4e uncertainties thanks to	QCD scale (ttH) +5.8
dedicated RMS method.	PDF set (ttH) \pm
	$ $ BR(H \rightarrow ZZ \rightarrow 4 ℓ)

v 1	~		
C	Common experimental	uncertainties	
	2016	2017	2018
Luminosity uncorrelated	1 %	2 %	1.5 %
Luminosity corr 16 17 18	0.6 %	0.9 %	2 %
Luminosity corr 17 18	-	0.6 %	0.2 %
Lepton id/reco efficiencies	0.7–10 %	0.6 - 8.5 %	0.6 – 9.5
	Background related u	ncertainties	
Reducible background (Z+X)	25 - 43 %	23 – 36 %	24 – 36
	Signal related unce	ertainties	
Lepton energy scale	0.01%(µ) - 0.06%(e)	0.01%(µ) - 0.06%(e)	0.01%(µ) - 0
Lepton energy resolution	3%(µ) - 10%(e)	3%(µ) - 10%(e)	$3\%(\mu)$ - 10

University of Science and Technology of China, Hefei

25

Fiducial/Differential Cross Section measurement

- * Definition of the fiducial phase space of $H \rightarrow ZZ \rightarrow 4l$
- * Number of events of different final state f and different year y in the given bin i are expressed as a function of 4l invariable mass

★ Fiducial + non-fiducial resonances signal contribution:	
 Shape is described by double-sided 	
Crystal Ball function.	Le
Normalization is proportional to the	Su
fiducial cross section.	Ac Ps
* Non-resonant signal contribution	Su
Arises from WH, ZH ttH where one of	
the leptons from Higgs is lost or not	Ex
selected.	In
Modeled by Landau distribution	In
 Treated as background 	Di
\bullet incated as packyround	In
	In

EPJC81(2021)488

$$\sigma_{i} = \frac{N_{reco, i}}{C_{i} * A_{i} * L * B} \longrightarrow \sigma_{fid, i} * B = \frac{N_{reco, i}}{C_{i} * L}$$

$$N_{\text{obs}}^{f,i,y}(m_{4\ell}) = N_{\text{fid}}^{f,i,y}(m_{4\ell}) + N_{\text{nonfid}}^{f,i,y}(m_{4\ell}) + N_{\text{nonres}}^{f,i,y}(m_{4\ell}) + N_{\text{bkg}}^{f,i,y}(m_{4\ell})$$
$$= \sum_{j}^{\text{genBin}} \epsilon_{i,j,y}^{f,y} \cdot (1 + f_{\text{nonfid}}^{f,i,y}) \cdot \sigma_{\text{fid}}^{f,j,y} \cdot \mathcal{L} \cdot \mathcal{P}_{\text{res}}^{f,y}(m_{4\ell})$$
$$+ N_{\text{nonres}}^{f,i,y} \cdot \mathcal{P}_{\text{nonres}}^{f,y}(m_{4\ell}) + N_{\text{bkg}}^{f,i,y} \cdot \mathcal{P}_{\text{bkg}}^{f,i,y}(m_{4\ell})$$

Requirements for the H $\rightarrow 4\ell$ fiducial phase space

Lepton kinematics and isolation

eading lepton $p_{\rm T}$	$p_{\rm T} > 20{ m G}$
μ ub-leading lepton $p_{\rm T}$	$p_{\rm T} > 10 { m G}$
dditional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5)$ C
seudorapidity of electrons (muons)	$ \eta < 2.5$ (2
Im of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{ m T}$
Event topology	
kistence of at least two same-flavor OS lepton pairs, where leptons	satisfy criteria abov
v. mass of the Z_1 candidate	$40 < m_{Z_1} < 12$
v. mass of the Z_2 candidate	$12 < m_{Z_2} < 12$
istance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for
v. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 40$
v. mass of the selected four leptons	$105 < m_{4\ell} < 1$

Results

Inclusive fiducial cross section

Differential production observables	Differe obs
$p_T^H y_H p_T^{j1} N_{jets}$	m_{Z1} m
p_T^{Hj} m_{Hjj} p_T^{j2} T_B^{max} T_C^{max}	$\cos(\theta_1)$
p_T^{Hjj} m_{jj} $ \Delta \eta_{jj} $ $ \Delta \phi_{jj} $	D^{dec}_{0-} D^{dec}_{CP} D

Double-differential observables

 T_C^{max} vs p_T^H

 m_{Z1} vs m_{Z2}

 p_T^H vs p_T^{Hj} p_T^{j1} vs p_T^{j2}

 $|y_H|$ vs p_T^H

 N_{jet} vs p_T^H

Results

Inclusive fiducial cross section

Double-differential observables

- from this method for **differential** measurements

Tahir Javaid

Results: Inclusive (all channels)

Results: Inclusive (all channels)

$$\sigma^{\text{fid}} = 2.73^{+0.22}_{-0.22} \text{ (stat)}^{+0.15}_{-0.14} \text{ (sys)} = 2.73^{+0.22}_{-0.22} \text{ (stat)}^{+0.12}_{-0.12} \text{ (ele)}^{+0.06}_{-0.05} \text{ (lumi)}^{+0.06}_{-0.05}$$

*The measured inclusive fiducial cross section of

- (left) *Different final states* with the irreducible background normalization taken from MC simulation
- (right) *Different final states* with the irreducible backgrounds normalization ZZ floating in the fit
 - Bottom panel shows ration between measured ZZ normalization and prediction from MC.

Differential production observables	Differ obs	
$p_T^H y_H p_T^{j1} N_{jets}$		
p_T^{Hj} m_{Hjj} p_T^{j2} T_B^{max} T_C^{max}		
p_T^{Hjj} m_{jj} $ \Delta \eta_{jj} $ $ \Delta \phi_{jj} $		

Double-differential observables

Results: Differential

***Revised binning** w.r.t previous analyses

 $*p_T(H)$ spectrum measured with an average precision of **35%** (in some bins down to 20%)

*Extension of the jet phase space (from $|\eta_{jet}| < 2.5$ to $|\eta_{jet}| < 4.7$); thanks to the improved CMS jet reconstruction

Results: Differential- Rapidity-weighted jet observables

test of QCD resummation since their resummation structure is different from p_T (jet).

Tahir Javaid

Higgs Potential 2024

Observables defined as the transverse momentum of the jet weighed by a function of its rapidity. They can be factorised and re-summed allowing for precise theory predictions and can be used as a

$$= m_T^j e^{-|y_j - Y_H|}$$

Results: Differential- Rapidity-weighted jet observables

test of QCD resummation since their resummation structure is different from p_T (jet).

Tahir Javaid

Higgs Potential 2024

Observables defined as the transverse momentum of the jet weighed by a function of its rapidity. They can be factorised and re-summed allowing for precise theory predictions and can be used as a

$$= m_T^j e^{-|y_j - Y_H|}$$

Phys.Rev.D 91 (2015) 5, 054023

Differen obsei
m_{Z1} m_{Z2}
$\cos(\theta_1)$ co
D_{0-}^{dec} D_{CP}^{dec} D_{0h+}^{dec}

ential decay ervables Φ_1 Φ l_{Z2} $\cos(\theta_2)$ $\cos(\theta^*)$

 $D^{Z\gamma,dec}_{\Lambda1}$

 D_{int}^{dec}

Double-differential observables

Interpretations

 $D^{dec}_{\Lambda 1}$

Results: Differential- Decay observables

The kinematics of the decay of the H boson in 4 leptons is fully described by the Higgs boson's mass and 7 parameters:

*The two **Z masses** (**Z1** and **Z2**)

***Three angles** describing the **fermion kinematics** (Φ , cos θ_2 , cos θ_1)

*** Two angles** connecting **production to decay** $(\Phi_1, \cos \theta^*)$

Tahir Javaid

Results for decay observables are presented in **2e2mu** and **4e+4mu**

final states as well.

The **same-flavour lepton interference** makes the shapes in 2e2mu

and 4e/4mu final states different

Results: Differential- Decay observables

The kinematics of the decay of the H boson in 4 leptons is fully described by the Higgs boson's mass and 7 parameters:

*The two **Z masses** (**Z1** and **Z2**)

* Three angles describing the fermion kinematics (Φ , Φ)

Two angles connecting production to decay (Φ_1 , cos

Tahir Javaid

Higgs Potential 2024

$$\cos \theta_2, \cos \theta_1)$$

Results: Differential- Matrix Elements Discriminants

Probe HZZ vertex via Matrix-Element discriminants sensitive to BSM physics

Tahir Javaid

Higgs Potential 2024

$\varepsilon_2)$	Coupling	g_4^{ZZ}	g_2^{ZZ}	k_1^{ZZ}	
SM	Discriminants to separate hypothesis	\mathscr{D}_{0-}^{dec}	\mathcal{D}_{0h+}^{dec}	$\mathscr{D}^{dec}_{\Lambda 1}$	Ç
= 2	Interference discriminants	\mathscr{D}_{CP}^{dec}	\mathcal{D}_{int}^{dec}	-	

obs		

Double-differential observables

 T_C^{max} vs p_T^H N_{jet} vs p_T^H

 $|y_H|$ vs p_T^H

 m_{Z1} vs m_{Z2} p_T^H vs p_T^{Hj}

 p_T^{j1} vs p_T^{j2}

(i) au_{c}^{max} vs p_{T}^{H}

