

中國科學院為能物脂細胞所 Institute of High Energy Physics Chinese Academy of Sciences

Rare Decays from Higgs Boson Including 2nd generation fermions

Qiuping Shen Institute of High Energy Physics, CAS

Higgs Potential 2024, Hefei, Anhui 2024-12-20

Overview and Motivation

- About 7.7M Higgs bosons produced at the LHC for the full Run2.
- Higgs decays properties studied by ATLAS and CMS Collaborations
 - Coupling to 3rd generation fermions and bosons observed (O~10%)
 - Quite consistent with SM predictions
 - **Rare channels** (i.e coupling to 2nd generation fermions or radiative decays) are **possible**.
 - Experimentally challenging (smaller BR)
 - Techniques to reduce relatively large backgrounds to improve signal efficiency
 - Any deviations? → hints toward Physics Beyond SM
- Overview of the talk:
 - Higgs rare decay, 2nd generation fermions, mesons + γ .

$H \rightarrow ll\gamma$ ($Z\gamma$ and $\gamma\gamma^*$)

$\otimes H \rightarrow Z\gamma$ Analysis: Overview

- $H \rightarrow Z\gamma$ rare decay via loop diagrams \rightarrow sensitive to new physics
 - Relatively small branching fraction: $Br \approx 1.54 \times 10^{-3}$
- Final state with one photon and two same-flavour opposite charge leptons (l = e, μ)
 - Additional requirements depending on the production modes
- Major backgrounds: Drell-Yan with ISR photon or Drell-Yan with jet (misidentified as γ)
- Events categorized to target the different H production modes
 - In some categories, **BDT score** used to define **analysis regions** with **various S/B ratios**
- Signals and backgrounds modeled with analytic function
 - Sig: Double-Sided Crystal Ball function
 - Bkg: using exponential, power law functions, Laurent series and Bernstein Polynomial functions

PhysRevLett.132.021803

Higgs Potential 2024

$\otimes H \rightarrow Z\gamma$ Analysis: Results

- **Binned-maximum likelihood fit** to all $m_{Z\gamma}$ distributions <u>PhysRevLett.132.021803</u>
 - From ATLAS+CMS combination, $\mu = 2.2 \pm 0.6(\text{stat})^{+0.3}_{-0.2}(\text{syst})$
 - **Observed** (expected) significance of $3.4\sigma (1.6\sigma) \rightarrow \text{First evidence of } H \rightarrow Z\gamma \text{ decay!}$

- **Results agree** with the expectations from theoretical predictions within 1.9σ <u>ANA-HIGP-2024-19</u>
- With the ongoing Run3, the precision is expected to improve a lot due to increased statistics.
 - The analysis group launched EB request recently and targets to *Spring/Summer 2025*. *Stay tuned!*

$\otimes H \to \gamma \gamma * \text{ Analysis}$

- Find Higgs decaying to $ll\gamma$ final state
- Complementary to $Z\gamma$ search: fiducial cut $m_{ll} < 30$ GeV
 - **CP properties** (three body final state) and **BSM couplings**
- Categorization: depending on leptons and kinematics
- Signal and background modeled by analytic functions
- Simultaneous unbinned likelihood fit in all categories.

Phys. Lett. B 819 (2021) 136412

- Observed: $\mu = 1.5 \pm 0.5$
- Significance of $H \rightarrow ll\gamma$:
 - **Observed** 3.2σ (expected 2.1σ)
- First evidence of $H \to \gamma \gamma^* \to l l \gamma!$

$H \to f \bar{f} \ (\ \mu^+ \mu^- \ {\rm and} \ c \bar{c} \)$

$\otimes H \rightarrow \mu \mu$ Analysis: Overview

Phys. Lett. B 812 (2021)

- Analysis targets main production modes $(ggFH, VBFH, VH, t\bar{t}H)$
 - Final state with **two muons**: **excellent signal resolution**
- Main experimental challenges:
 - Small branching ratio ($Br \approx 2.2 \times 10^{-4}$)
 - Physics beyond the SM can modify it
 - Large irreducible bkg: Drell-Yan process ($Z \rightarrow \mu \mu$)
 - S/B ~ 0.2% in the SR (120 GeV < $m_{\mu\mu}$ < 130 GeV)
- BDTs used to discriminate signal and background events for each production mode
 Events categorized in 20 regions

$\otimes H \rightarrow \mu \mu$ Analysis: Results

- Fit to $m_{\mu\mu}$ performed between 110-160 GeV
- Signal modeled using **double-sided crystal ball function**
- Background modeled using empirical functional forms
- Simultaneous binned-likelihood fit:
 - Best fit signal strength $\mu = 1.2 \pm 0.6$
 - Observed significance: 2.0σ (expected 1.7 σ)
- Results from CMS:
 - $\mu = 1.19^{+0.41}_{-0.40}$ (stat) $^{+0.17}_{-0.16}$ (syst)
- Observed significance: 3.0σ
 - First evidence!
- The ongoing Run3 will bring some improvements. *Stay tuned!*

VBF-cat

ggH-cat.

tīH-cat.

$\otimes VH \rightarrow c\bar{c}$ Analysis: Overview

- Small $Br(H \to c\bar{c}) \approx 3 \% \to \text{analysis targets the } V(lep)H$ production
- Simultaneous study of the VH($b\bar{b}$) and VH($c\bar{c}$) final states

- Categorization based on flavours, #leptons, #additional jets, pT of the vector boson (p_{T}^{V})
- Major backgrounds from **Z+jets**, **W+jets** and **top**
 - Shape from MC, normalization from the CRs.
- MVA techniques to discriminate VH signal and backgrounds

$\otimes VH \rightarrow c\bar{c}$ Analysis: Results

- **Binned maximum likelihood fit** to extract simultaneously μ_{VH}^{bb} and $\mu_{VH}^{c\bar{c}}$
 - $\mu_{VH}^{b\bar{b}} = 0.91^{+0.16}_{-0.14} = 0.91 \pm 0.10 \text{ (stat.)}^{+0.12}_{-0.11} \text{ (syst.)}$ • $\mu_{VH}^{c\bar{c}} = 1.0^{+5.4}_{-5.2} = 1.0^{+4.0}_{-3.9} \text{(stat.)}^{+3.6}_{-3.5} \text{(syst.)}$
- Observed (expected) upper limits on $\mu_{VH}^{c\bar{c}}$ of 11 (10) × SM @ 95% CL
- 1D likelihood scan, fixing $\kappa_b = 1 : |\kappa_c| < 4.2 @ 95 \% CL$

$\otimes H(\rightarrow \gamma \gamma) + c$ Analysis

- Search for the $pp \rightarrow H + c$ production
 - Probe the coupling of the Higgs boson to charm quarks
 - via the $g + c \rightarrow H + c$ process
 - Large background contribution \rightarrow use clean $H \rightarrow \gamma \gamma$ decay
- Final state with two photons and one jet:
 - ATLAS: the jet can be either a c-tagged jet or non c-tagged jet

É

- CMS: only c-tagged jet
- ATLAS: target inclusive H+c production
 - $\hat{\sigma}(H+c) = 5.2 \pm 3.0 \text{ pb}$
 - Observed (expected) limits $\sigma(H + c) < 10.4$ (8.6) pb at 95%
- CMS: target the **associated production c+H** to study κ_c
 - Observed (expected) $\mu_{cH} < 243$ (355)
 - Observed (expected) limits $|\kappa_c| < 38.1$ (72.5) at 95%

00000000000000

$H \rightarrow \text{mesons}(D^*, J/\psi/\psi(2S), \rho/\phi/K^{*0}) + \text{photon}$

$\otimes H \to D^* + \gamma$ Analysis

- The **rare decay** allows to
 - Study the Higgs coupling to light-quarks (u, d, s)
 - Probe the flavour changing Yukawa interactions
- Analysis also exploits $Z \to D^0 + \gamma$ and $Z \to K_S^0 + \gamma$
- Almost all D^* decays into $D^0 + \gamma$ or $D^0 + \pi^0$
 - Focus on the $D^0 \to K^- \pi^+ \text{decay} (Br \approx 4\%)$
- Final state characterized by a **distinctive signature**:
 - Two isolated-tracks against a photon + displaced vertex from a meson decay
- Bkg dominated by γ +jet and multi-jet processes
- No significant excess is observed.
 - First limits on $H \to D^* + \gamma$ and $Z \to K_S^0 + \gamma$
 - Great improvement (500x) on the limit of $Z \rightarrow D^0 + \gamma$ set by LHCb

Phys. Lett. B 855 (2024) 138762

 $\left(3.4^{+1.4}_{-1.0}\right)\times10^{-6}$

 $(3.0^{+1.3}_{-0.8}) \times 10^{-6}$

 $4.0 imes 10^{-6}$

 $3.1 imes 10^{-6}$

 $\mathcal{B}\left(Z
ightarrow D^0 \gamma
ight)$

 $\mathcal{B}(Z \to K_S^0 \gamma)$

CMS-PAS-SMP-22-012

• Obs: $-157 < \kappa_c/\kappa_\gamma < 199$

• Exp: $-121 < \kappa_c / \kappa_{\gamma} < 161$

 $H
ightarrow \psi$ (2S) γ

 $Z
ightarrow J/\psi \, \gamma$

 $Z \rightarrow \psi(2S) \gamma$

 $9.9 imes 10^{-4}$

 $0.6 imes10^{-6}$

 $1.3 imes10^{-6}$

$\otimes H \rightarrow \rho / \phi / K^{*0} + \gamma$ Analysis

- Higgs decays to light-flavored mesons.
 - $H \rightarrow \rho/\phi + \gamma$ to study the Higgs coupling to light-quarks (*u*, *d*, *s*
 - ◆ Direct contribution is very small → main contribution from diagram with Higgs to di-photon , with one off-shell photon
 - $H \to K^{*0} + \gamma$: probe the flavours changing neutral current
- Analysis targets three main production modes (ggFH, VBFH, VH)
- Final state with one γ +2 tracks to identify meson decaying to K or π
- Major backgrounds: γ+jet and multi-jets (Chebychev polynomial)
- Unbinned maximum likelihood fit on $m_{M\gamma}$ distributions
- No excess over the background expectations

	Expected	Observed
$\mathcal{B}(H\to\rho+\gamma)$	5.7×10^{-4}	3.74×10^{-4}
$\mathcal{B}(H \to \phi + \gamma)$	2.9×10^{-4}	2.97×10^{-4}
$\mathcal{B}(H\to K^{*0}+\gamma)$	1.7×10^{-4}	1.71×10^{-4}

arxiv.2410.18289

Conclusions

- ATLAS and CMS Collaboration have searched for rare Higgs decays
 - Study Higgs Yukawa coupling to second generation fermions:
 - **\star Improved constraints on the c-quark Yukawa coupling** from *VH*($c\bar{c}$) analysis
 - **\star** First evidence of the $H \rightarrow \mu\mu$ decay
 - **\star First evidence** of $H \to Z\gamma$ decay
 - **\star First evidence** of $H \to \gamma \gamma^* \to ll \gamma$ decay
 - Probe Higgs boson coupling to light quarks via Higgs decay to meson + photon
- With improved analysis techniques

 (i.e. improved c-tagging algorithm) and

 increased integrated luminosity, we have great
 possibilities to observe many rare Higgs decays.

Stay tuned for more exciting results to come!

Thanks for your attention!

Email Address: qiuping.shen@cern.ch

2024-12-20

Backup Slides

Overview and Motivation

• Details: Nature 607 52 (2022) 1 Branching fraction -01 -01 -01 -01 • $H \rightarrow Z\gamma$ (ATLAS + CMS) ATLAS Run 2 $\bullet H \to \mu^+ \mu^ K_F \frac{m_F}{\text{vev}}$ or $\sqrt{K_V} \frac{m_V}{\text{vev}}$ ATLAS Run 2 • $H \rightarrow \gamma^* \gamma$ $\mathbf{\overline{\Phi}}$ $\kappa_{c} = \kappa_{\star}$ Data (Total uncertainty) $\kappa_{\rm c}$ is a free paramete 10^{-3} Syst. uncertainty • $VH \rightarrow c\bar{c}$ c-quark SM prediction Ratio to SM 8.0 SM 8.0 SM Leptons Quarks • $cH \rightarrow \gamma \gamma$ c-quark 10-• Quick overview: WW $\tau\tau$ ΖZ YΥ Zγ hb 10 Decay mode 1.4 🏳 $\kappa_{_V}$ κ_F or • $H \rightarrow D^* + \gamma =>$ light-quark (u, d, s) 1.2 • $H \rightarrow J/\psi/\psi(2S) + \gamma => c$ -quark 0.8 10^{2} 10^{-1} 10 Particle mass [GeV] • $H \rightarrow \rho/\phi/K^{*0} + \gamma =>$ light-quark (u, d, s)

$\otimes H \to \gamma \gamma * \text{ and } H \to Z \gamma$

- Fiducial cut on $m_{ll} < 30 \text{ GeV}$
- The interference is negligible.

