

Anomalous couplings and off-shell Higgs measurements at CMS

<u>Jeffrey Davis</u> - Johns Hopkins University (CMS)

December 20 2024

Introduction

- **Higgs Boson**: a key piece of the SM and a portal to BSM physics at the LHC ۲
- Higgs couplings to SM particles are well predicted from mass ۲ measurements
- Any deviations in Higgs couplings implies new physics that couples to the Higgs boson
- Main topics of this talk: ۲
- Theory behind CMS anomalous coupling measurements (beyond kappa framework)
- Results and methodology for experimental constraints

Interpreting Deviations

[1]

Conservative Scaling for Upper Limit on Mass Scale Probed by Higgs Precision

General Concepts

Amplitude Formalism

•SM Tree Level (+Kinetic Terms), CP-Even Dim-6, CP-Odd Dim-6

- Measure effective fractional cross sections
 - Many systematics cancel

Ex: $f_{a2} = 0.5 \rightarrow \frac{1}{2}$ measured $H \rightarrow ZZ$ crosssection from anomalous coupling a_2^{ZZ}

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j} \operatorname{sign}\left(\frac{a_i}{a_1}\right)$$

Note: a_i can be related to Wilson coefficients in SMEFT Lagrangian (Ex. below)

$$\begin{split} \mathcal{L}_{\rm hvv} &= \quad \frac{h}{v} \left[M_Z^2 \left(1 + \delta c_z \right) Z_\mu Z^\mu + \frac{M_Z^2}{v^2} c_{zz} Z_{\mu\nu} Z^{\mu\nu} + \frac{e^2}{s_w^2} c_{z\Box} Z_\mu \partial_\nu Z^{\mu\nu} + \frac{M_Z^2}{v^2} \tilde{c}_{zz} Z^{\mu\nu} \tilde{Z}_{\mu\nu} \right. \\ &+ 2 M_W^2 \left(1 + \delta c_w \right) W_\mu^+ W^{-\mu} + 2 \frac{M_W^2}{v^2} c_{ww} W_{\mu\nu}^+ W^{-\mu\nu} + \frac{e^2}{s_w^2} c_{w\Box} \left(W_\mu^- \partial_\nu W^{+\mu\nu} + {\rm h.c.} \right) \\ &+ \frac{e^2}{2 s_w^2} \tilde{c}_{ww} W^{+\mu\nu} \tilde{W}_{\mu\nu}^- + \frac{e^2}{2 s_w c_w} c_{z\gamma} Z_{\mu\nu} A^{\mu\nu} + \frac{e^2}{2 s_w c_w} \tilde{c}_{z\gamma} Z_{\mu\nu} \tilde{A}^{\mu\nu} + \frac{e^2}{s_w c_w} \tilde{c}_{z\gamma} Z_{\mu\nu} \tilde{A}^{\mu\nu} + \frac{e^2}{s_w c_w} c_{\gamma\Box} Z_\mu \partial_\nu A^{\mu\nu} \\ &+ c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A^{\mu\nu} + \tilde{c}_{\gamma\gamma} \frac{e^2}{4} A^{\mu\nu} \tilde{A}_{\mu\nu} + c_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a G^{\mu\nu} + \tilde{c}_{gg} \frac{g_s^2}{4} G^{\mu\nu} \tilde{G}_{\mu\nu}^a \right], \end{split}$$

- f_{ai} can be interpreted in different ways
 - Search for single anomalous contribution

- f_{ai} can be interpreted in different ways
 - Search for single anomalous contribution
 - $SU(2) \times U(1)$ (SMEFT) Approach

- f_{ai} can be interpreted in different ways
 - Search for single anomalous contribution
 - $SU(2) \times U(1)$ (SMEFT) Approach
 - Custodial Symmetry?

- f_{ai} can be interpreted in different ways
 - Search for single anomalous contribution
 - $SU(2) \times U(1)$ (SMEFT) Approach
 - Custodial Symmetry?
 - Already constrained to be small?

Optimal Observables

On-Shell Results

Anomalous Couplings in $H \rightarrow WW$ on CMS

Anomalous Couplings in $H \rightarrow WW$ on CMS

- Constraints on anomalous Higgs-gluon couplings
- Same Selection as before
- New Categorization (2-jet ggH vs others)
 - Further Split

CMS

D,

× 05

Events / bin

Data/Expectec

10

10²

10

2 1.5

0.5

VBF-like (D_{VBF} >0.5)

• $sign\left(\frac{g_4}{g_2^{gg}}\right)$		
ggH 2-jet, D ^{ggH} _{CP} < 0 138 fb ⁻¹ (13 TeV)	CMS ggH 2-jet, D ^{ggH} > 0 138 fb ⁻¹ (13 TeV)	138 fb ⁻¹ (13 TeV)
$ \qquad \qquad$	$ \begin{array}{c} \mathbf{L} \\ \mathbf$	tent with SM — Observed
prompt WW tW and t \tilde{t} BF < 0.5 D _{VBF} > 0.5	$ 10^{3} \begin{bmatrix} Nonprompt & WW & tW and tt \\ D_{VBF} < 0.5 & D_{VBF} > 0.5 \end{bmatrix} $	Expected
		68% CL

 (a^{gg})

250, 6 1, 0, 00, 20³

405

2,007

First constraint on CP structure of gluon vertex in $H \rightarrow WW$

Data/Expected

2 1.5

0.5

Constraints looser than $H \rightarrow \tau \tau$ but tighter than $H \rightarrow 4l$

Variable	ggH	2-jet ggH
N _{jet} (AK4 jets)	0 & 1	2
m _{ij}		> 120 GeV
$m_{\ell\ell}$		< 55 GeV

 $0 \\ f_{a3}^{ggH}$

0.5

sign

-0.5

J.' 0.7-0.8

0.8-1.0

D₀₋

0.4

0.2

 $f_{a3}^{\rm ggH}$

 a_3^{gg}

 $a_2^{\overline{gg}}$

Anomalous Couplings Combination $H \rightarrow ZZ, \gamma\gamma, \tau\tau$

- Constraints on anomalous HVV couplings using the ZZ + $\tau\tau$ final states
- Will not go in detail about selection etc. in interest of time
- $H \rightarrow \tau \tau$ constrains anomalous HVV couplings in EW production
- $H \rightarrow ZZ$ constrains anomalous couplings in decay and production

- Combined results do not enforce SMEFT relations or float other f_{ai}
- HZZ only enforces SMEFT relations and floats all anomalous couplings

Anomalous Couplings Combination $H \rightarrow ZZ, \gamma\gamma, \tau\tau$

- Constraints on anomalous Hff and Hgg couplings using the ZZ + $\tau\tau$ + $\gamma\gamma$ final states
- $H \rightarrow \tau \tau, H \rightarrow ZZ$ jet correlations in ggF constrain anomalous coupling
- $H \rightarrow \gamma \gamma$ constrains anomalous couplings from ttH

γH Production at the LHC

- Non-Zero Wilson coefficients greatly enhance high p_T region
- Signal: Higgs with associated high p_T photon

γH Production on CMS

Off-Shell Higgs

Concepts

Recent Off-shell result from CMS

ChannelObserved $\Gamma_{\rm H}$ (MeV)Expected $\Gamma_{\rm H}$ (MeV) 4ℓ on- and off-shell + $2\ell 2\nu$ off-shell $3.0^{+2.0}_{-1.5}$ [0.6, 7.3] 4.1 ± 3.5 [0.1, 10.5]

Anomalous Couplings in Off-shell H

- Applied to CMS data using $H^* \rightarrow 4l/2l2\nu$
- First step towards full EFT anomalous coupling fit using on-shell/off-shell

Conclusion

- Rich program of anomalous coupling measurements at CMS
- "Dedicated" analysis important to push precision on Higgs couplings
- New production modes can play a key role!
- Presented newest off-shell result and H->WW
- New combinations with Run-3 , off-shell and other decay channels is expected to improve constraints
- Expect to see more exciting results in the future!

[1] The Case for Precision Higgs Physics arxiv:2209.07510

[2] The Custodial Symmetry arxiv:0302058

[3] A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery arxiv:2207.00092

[4] A portrait of the Higgs boson by the CMS experiment ten years after the discovery https://arxiv.org/abs/2207.00043

[7] Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton-proton collisions at $sqrt{s} = 13TeV$ arxiv:2403.00657

[8] Search for gammaH production in pp collisions at sqrt{s} = 13TeV and constraints on the Yukawa couplings of light quarks to the Higgs boson using data from the CMS detector <u>cds:2911152</u>

[10] Yellow Report 3 arxiv:1307.1347

[11] New features in the JHU generator framework: constraining Higgs boson properties from on-shell and off-shell production <u>arxiv.:2002.09888</u>

[12] Measurement of the Higgs boson mass and width using the four-lepton final state in proton-proton collisions at $sqrt{s} = 13TeV$ <u>https://arxiv.org/abs/2409.13663</u>

[13] Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production arxiv:2202.06923

[14] Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the $\tau\tau$ final state <u>arxiv:2205.05120</u>

Backup

Relative Sign κ_w/κ_z at the LHC

• Amplitude of $qq \rightarrow qqW(\rightarrow l\nu)H(\rightarrow b\overline{b})$ proportional to $(\kappa_w \kappa_z)$ at tree-level with enhancement at high p_T for negative λ_{WZ} [5-6]

Relative Sign κ_w/κ_z on ATLAS [5]

- Two different analysis tuned for each scenario (similar selection):
 - SM: $sign(\lambda_{WZ}) = 1$
 - Observable: Yield in Signal Region (2 orthogonal SR used)
 - **BSM**: $sign(\lambda_{WZ})$ unconstrainted
 - Observable: Yield in signal region
 - All backgrounds in SR: normalized with respect to best fit in control region

Relative Sign κ_w/κ_z Comparison

- Observed (Expected) 95% CL on SM-like VBF *WH*
 - $\sigma_{qqW(\rightarrow l\nu)H(\rightarrow b\bar{b})} < 14.3(9.0) \times \sigma_{qqW(\rightarrow l\nu)H(\rightarrow b\bar{b})}^{SM}$
- $\lambda_{WZ} = -1$ excluded with significance > 5σ

- Observed (Expected) 95% CL on SM-like VBF WH
 - $\sigma_{qqW(\rightarrow l\nu)H(\rightarrow b\bar{b})} < 9.0(8.7) \times \sigma_{qqW(\rightarrow l\nu)H(\rightarrow b\bar{b})}^{SM}$
- $\lambda_{WZ} = -1$ excluded with significance > 5 σ

Both measurements consistent with each other and the SM

Relative Sign κ_w/κ_z at CMS [6]

- Two different analysis tuned for each scenario (similar selection):
 - SM: $sign(\lambda_{WZ}) = 1$
 - Observable: BDT score (SM VBS WH vs Bkg)
 - **BSM**: λ_{WZ} unconstrainted
 - Observable: Yield in signal region
 - Background estimated from orthogonal regions

JEFFREY DAVIS

Evidence for $H \rightarrow Z\gamma$ at the LHC

CMS

- Leading order $H \rightarrow Z\gamma$ single loop in SM
- **Rarest** H decay to vector bosons $\Gamma_{H \to Z\gamma}^{SM} \sim 0.0015\%$
- Only observable in $Z \rightarrow ll$
- Enhancement of $H \rightarrow Z\gamma$ signal of BSM physics
- Higgs is Composite, Singlet, pseudo Nambu–Goldstone?
- Heavy, charged BSM particles in the loop?

Evidence for $H \rightarrow Z\gamma$ at the LHC

• Evidence for $H \rightarrow Z\gamma$ at **3.4** σ with signal strength $\mu = 2.2 \pm 0.7$

• Interpret signal strength in terms of coupling strength modifier

$H \rightarrow ZZ + H \rightarrow \gamma \gamma$ Run-3 CMS

- CMS recently published their first Run-3 cross section measurements of $H \rightarrow ZZ$ ٠ and $H \rightarrow \gamma \gamma$ (13.6 TeV)
- Analysis Strategy: Fit to $m_{\gamma\gamma}$ or m_{4l}
- Results: Fiducial cross section (assumes SM BR and Selection Efficiency)

$H \rightarrow ZZ + H \rightarrow \gamma \gamma$ Run-3 ATLAS

- CMS
- ATLAS published the first Run-3 cross section measurements of $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$ (13.6 TeV)
- Analysis Strategy: Fit to $m_{\gamma\gamma}$ or m_{4l}
- Results: Fiducial cross section (assumes SM BR and Selection Efficiency)

