

Electroweak corrections to double Higgs production at the LHC

Huan-Yu Bi Center for High Energy Physics, Peking University

Dec. 20th, 2024

1/17

Introduction

- Introduction
- Calculation strategy
- Results
- Summary

Measurements of Higgs boson coupling

 $\textcircled{B} g_{Hf\bar{f}}, g_{HVV}$

 can be measured with high precision.

$\bigcirc \lambda_{HHH}, \lambda_{HHHH}$

- require multi-Higgs production, small cross sections.
- Mixed with complicated background.

LHC RUN2	HL-LHC
$-1.2 < \lambda/\lambda_{SM} < 7.2$ $-1.4 < \lambda/\lambda_{SM} < 6.4$	$-0.5 < \lambda/\lambda_{SM} < 1.5$
ATLAS: 2406.09971 CMSPASHIG-20-011	Jones: LHEP 2023 (2023) 442

Status of QCD corrections

- NLO QCD
 - > NLO QCD with full top-quark mass dependence, Borowka et al:1604.06447
 - > NLO QCD matched to parton shower, Heinrich et al:1703.09252
 - > NLO QCD with soft-gluon resummation, Ferrera et al: 1609.01691
- NNLO QCD
 - > NNLO QCD in heavy-top limit (HTL) approximation, Florian et al:1305.5206
 - NNLO in HTL+ NLO with full top-quark mass dependence, Florian et al:2106.14050
 - > NNLO QCD in HTL matched to parton shower, Alioli et al: 2212.10489
- NNNLO QCD
 - > NNNLO QCD in HTL, Chen et al:1909.06808
 - > NNNLO in HTL include the top-quark mass effects, Chen et al:1912.13001
 - NNNLO in HTL + NLO with full top-quark mass dependence + soft-gluon resummation, Ajjath et al:2209.03914 Uncertainty from top mass effects are about 5%

Process	Theory	$\sigma_{ m th}$ [pb]	δ_{th} [%]	$\delta_{\rm PDF}$ [%]	δ_{α_s} [%]
ggF HH	N ³ LO _{HTL}	0.03105	+2.2	±2.1	± 2 .1
	NLO _{QCD}	0.00100	-5.0		

Importance of EW corrections () 注意大学

- Size of EW corrections
 - Most important part in the uncertainty budget
- NLO EW corrections are notably significant at high energy region

process	known	desired	5/17
$pp \to HH$	$\rm N^3LO_{\rm HTL} \otimes \rm NLO_{\rm QCD}$	$\mathrm{NLO}_{\mathrm{EW}}$	

Status of NLO EW corrections

- Results in literature
 - Higgs self-coupling corrections in EFT: Borowka et al: 1811.12366
 - EW corrections contains only new physics: $V^{\rm NP}(\Phi) \equiv \sum_{n=3}^{\infty} \frac{c_{2n}}{\Lambda^{2n-4}} \left(\Phi^{\dagger} \Phi \frac{1}{2} v^2 \right)^n$.
 - Two-loop Yukawa corrections: Davies et al:2207.02587
 - Higgs boson is exchanged between the top quarks; Master Integrals in the high-energy limit is published.
 - Top-quark Yukawa corrections : Muhlleitner et al:2207.02524
 - Partly in HTL (ggH(H) vertices), Total and differential cross section are presented.
 - > HTL and Neglecting diagrams with only massless fermion loops, Davies et al: 2308.01355
 - $|M|^2$ at particular phase space points ($\frac{p_T}{\sqrt{\xi}}$ =0.1) are presented.
 - HTL does not show a convergent behaviour.
 - Full EW corrections: Bi et al:2311.16963
 - Total and differential cross section are presented with full top mass effects.
 - Top-Yukawa and Higgs self-coupling contributions: Heinrich et al:2407.04653
 - Total and differential cross section are presented with full top mass effects.
 - Higgs self-coupling corrections: Li et al:2407.14716
 - Results in κ framework are discussed.
 - Upper limit on the HHH coupling is improved.

Calculation strategy

- Introduction
- Calculation strategy
- Results
- Summary

EW corrections to double H production at the LHC

LO diagrams:

NLO diagrams:

Typical Feynman diagrams at NLO EW

Calculations of two loop integrals

Analytically calculation: (for e.g. Davies et al:2207.02587 and 2308.01355)

Advantage:

- Results can be formulated analytically.
- Disadvantage:
 - Results are only valid in some particular limit.
 - Results are expressed as an expansion respect to some parameters.
 - Only partial sub-diagrams can be calculated analytically.

Numerically calculation: (for e.g. Bi et al:2311.16963; Li et al:2407.14716; Borowka et al: 1811.12366; Heinrich et al:2407.04653)

Advantage:

- MIs are easier to compute.
- Public packages are available: **AMFlow** Liu et al: 2201.11669; **pySecDec** Borowka et al: 1703.09692

Disadvantage:

9/17

• MIs need to be calculated at a lot of points to obtain cross sections

Calculation strategy

- Introduction
- Calculation strategy
- Results
- Summary

Results: Total cross sections

μ	$M_{HH}/2$	$\sqrt{p_T^2 + m_H^2}$	m_H
LO	19.96(6)	21.11(7)	25.09(8)
NLO	19.12(6)	20.21(6)	23.94(8)
\mathcal{K} -factor	0.958(1)	0.957(1)	0.954(1)

LO and NLO EW corrected integrated cross sections (in fb) 14 TeV LHC.

- Differences with varying scale choices are around 20%.
 - Huge scale uncertainties. Can be reduced by including QCD corrections.
- K-factor is insensitive to the scale choice.
 - > EW corrections beyond NLO are on the order of a few thousandths.
- The statistical uncertainty for the K-factor is smaller than that of $\sigma_{LO,NLO}$.
 - K-factor can get a controllable error with far fewer events.

Results: Total cross sections (例 注意大学

	Full EW corrections	H self-coupling contributions	top-Yukawa contributions		
δ^{EW}	-4.2%	-1.395%	2.344%		
Bi et al:2311.16963		0.949%			
δ^{EW} Heinrich et al:2407.04653	-	1	%		
δ^{EW}	-	-1.401%	2.355%		
Li et al:2407.14716 and Zhang's talk at Higgs 2023		0.953%			
δ ^{EW} Muhlleitner et al:2207.02524	-	-	0.2% 1		
			HTL for qqH(H) vertices		

Results: Differential cross sections

- Significant corrections at HH production threshold.
 - > The gauge boson contributions included in full EW corrections is negative in the threshold region.
 - > Top-Yukawa contributions and H self-coupling contributions have opposite signs in the threshold region.
- Partial results have ~0% corrections at high energy region, while full EW shows -10% corrections at high energy region.
 - > The gauge boson contributions included in full EW corrections is negative at high energy region.
- The last plot shows that the M_{HH} is sensitive to the modeling of H self-coupling.
 - > The measurement of M_{HH} at HH production threshold is key issue to probe the H self couplings.

Results: Differential cross sections

- At High energy region
 - Positive corrections for top-Yukawa + H self-coupling contributions
 - Negative corrections for full EW corrections
 - > At high energy region, gauge boson contribution dominates and is negative

Results: Differential cross sections

- Flat corrections at around -4%.
 - Similar to the total cross section

Results

Bin (GeV)	250 - 300	300 - 400	400 - 500	500 - 600	600 - 700	700 - 800	800 - 900	900 - 1000
K-fac	1.157(4)	1.000(2)	0.9442(2)	0.9263(2)	0.9204(3)	0.9171(9)	0.916(2)	0.916(2)
Bin (GeV)	1000 - 1100	1100 - 1200	1200 1300	1300 - 1400	1400 - 1500	1500 - 1600	1600 - 1700	1700 - 1800
K-fac	0.915(2)	0.913(2)	0.911(2)	0.911(2)	0.910(1)	0.9082(8)	0.9054(5)	0.902(2)
Bin	0	50	100	150	200	250	300	350
(Gev)	50	- 100	150	200	250	300	350	400
K-fac	1.010(4)	1.000(2)	0.969(2)	0.9399(4)	0.9249(1)	0.9172(1)	0.9129(1)	0.9104(1)
Bin (GeV)	400	450	500	550	600	650	700	750
(Gev)	450	500	550	600	650	700	750	800
K-fac	0.9089(1)	0.9079(1)	0.9069(1)	0.9059(1)	0.9047(1)	0.9033(2)	0.9018(1)	0.8999(5)

Bin	-2.5	-2.04545	-1.59091	-1.13636	-0.681818	-0.227273	0.227273	0.681818
	-2.04545	- 1.59091	-1.13636	- -0.681818	-0.227273	0.227273	- 0.681818	- 1.13636
K-fac	0.960(3)	0.957(2)	0.959(2)	0.957(1)	0.956(2)	0.957(2)	0.957(2)	0.958(2)
Bin	1.13636	1.59091	2.04545					
	- 1.59091	2.04545	2.5					
K-fac	0.961(3)	0.961(6)	0.963(4)					

Summary

- Higgs self coupling is important to identify the Higgs potential and to probe new physics.
- The study of $\sigma(HH)$ is the best way to extract the Higgs self coupling.
- Our full calculation includes all the diagrams and all the mass effects.
- -4% EW corrections at total cross section level.
- For dimensionful observables, EW corrections reach up to +15% at the beginning of the spectrum and -10% in the tail.
- Our results suggest that the remained uncertainties from theoretical side is overall about few percent and it's precise enough for the measurements at the HL-HLC.

Thanks for your attention!