Higgs Couplings in SMEFT Global Fits

Jiayin Gu (顾嘉荫)

Fudan University

Higgs Potential 2024 USTC, Hefei, Dec 20, 2024

Jiayin Gu (顾嘉荫)

Higgs Couplings in SMEFT Global Fits

Fudan University

Why Higgs couplings? Why SMEFT?

- ► Build large colliders → go to high energy → discover new particles!
- Higgs and nothing else?
- What's next?
 - Build an even larger collider (~ 100 TeV)?
 - No guaranteed discovery!

Why Higgs couplings? Why SMEFT?

- ► Build large colliders → go to high energy → discover new particles!
- Higgs and nothing else?
- What's next?
 - Build an even larger collider (~ 100 TeV)?
 - No guaranteed discovery!

- ► Build large colliders → do precision measurements → probe new physics!
 - Higgs factory! (HL-LHC, or a future lepton collider)
 - Many other precision measurements! (Z, W, top, ...)
 - Standard Model Effective Field Theory (model independent approach)

To summarize in one sentence...

"Our future discoveries must be looked for in the sixth place of decimals."

- Albert A. Michelson

Jiayin Gu (顾嘉荫)

Higgs Couplings in SMEFT Global Fits

Fudan University

The Standard Model Effective Field Theory

- $[\mathcal{L}_{sm}] \leq 4$. Why?
 - Bad things happen when we have non-renormalizable operators!
 - Everything is fine as long as we are happy with finite precision in perturbative calculation.
- ► **d=5:** $\frac{c}{\Lambda}LLHH \sim \frac{cv^2}{\Lambda}\nu\nu$, Majorana neutrino mass.
- Assuming Baryon and Lepton numbers are conserved,

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

► If $\Lambda \gg v$, *E*, then **SM + dimension-6 operators** are sufficient to parameterize the physics around the electroweak scale.

The Standard Model Effective Field Theory

		X^{2}	φ^4 and $\varphi^4 D^2$		6263		(LL)(LL)		$(\bar{R}R)(\bar{R}R)$		(LL)(RR)		
	Qc	$\int^{ABC}G^{A\nu}_{\nu}G^{B\mu}_{\nu}G^{C\mu}_{\nu}$	90	$(\varphi^{\dagger}\varphi)^{3}$	Q.,,	$(\varphi^{\dagger}\varphi)(\overline{l}_{\rho\sigma,\varphi})$	Q_{k}	$(\bar{l}_{p}\gamma_{p}l_{t})(\bar{l}_{s}\gamma^{\mu}l_{t})$	Q_{ee}	$(\tilde{e}_{\mu}\gamma_{\mu}e_{\tau})(\tilde{e}_{\mu}\gamma^{\mu}e_{t})$	$Q_{\rm bc}$	$(\tilde{l}_{\mu}\gamma_{\mu}l_{\nu})(\tilde{e}_{\mu}\gamma^{\mu}e_{\mu})$	
and a state of the	90	1 ABC GA+ GS+ GC+	20	(φ [†] φ)⊡(φ [†] φ)	Que	$(\varphi^{\dagger}\varphi)(\ddot{q}, v, \vec{\varphi})$	$Q_{eq}^{(1)}$	$(\bar{q}_{\mu}\gamma_{\mu}q_{\nu})(\bar{q}_{\nu}\gamma^{\mu}q_{\nu})$	Q_{in}	$(\delta_{\mu}\gamma_{\mu}v_{\nu})(\theta_{\mu}\gamma^{\mu}v_{\mu})$	Q_{he}	$(\tilde{l}_{p}\gamma_{p}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$	
X + F. F"	Qu	e ^{IJK} W ^I *W ^J *W ^K *	Qan	$(\varphi^{\dagger}D^{*}\varphi)^{*}(\varphi^{\dagger}D_{*}\varphi)$	0	(0 ¹ 0)(q,d,o)	$Q_{m}^{(0)}$	$(\bar{q}_{\mu}\gamma_{\mu}\tau^{I}q_{\nu})(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i})$	Q_{M}	$(\tilde{d}_y \gamma_y d_r) (\tilde{d}_z \gamma^{\mu} d_l)$	Q_M	$(\bar{l}_{\mu}\gamma_{\mu}l_{\tau})(\bar{d}_{e}\gamma^{\mu}d_{e})$	
	0	ALSEWIDW JOWER					$Q_{lq}^{(0)}$	$(\bar{l}_{\mu}\gamma_{\mu}l_{\pi})(\bar{q}_{\mu}\gamma^{\mu}q_{\mu})$	Q_{ra}	$(\hat{e}_{\mu}\gamma_{\mu}e_{\nu})(\hat{u}_{s}\gamma^{s}u_{l})$	$Q_{q \pi}$	$(\bar{q}_{\mu}\gamma_{\mu}q_{\nu})(\bar{e}_{\mu}\gamma^{\mu}e_{1})$	
	Y2.2		12 V		<i>.2.2</i> n		$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_p \tau^I l_r) (\bar{q}_i \gamma^{\mu} \tau^I q_l)$	Q_{el}	$(\bar{c}_{\mu}\gamma_{\mu}c_{\tau})(\bar{d}_{s}\gamma^{s}d_{t})$	$Q_{gv}^{(1)}$	$(\bar{q}_{\rho}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$	
		A W		a mail and	-00	440 m			$Q_{ud}^{(3)}$	$(\hat{u}_{\mu}\gamma_{\mu}u_{\tau})(\bar{d}_{\mu}\gamma^{\mu}d_{t})$	$Q_{\mu\nu}^{(6)}$	$(\bar{q}_j\gamma_jT^Aq_r)(\bar{u}_i\gamma^\mu T^Au_l)$	
+ i J Divi at	4,0	φφG _m G ^{rad}	Q.W	$(l_{\mu}\sigma^{\mu\nu}e_{\nu})T^{\mu}\varphi W^{\mu}_{\mu\nu}$	44	$(\varphi^{\gamma_1}D_{\mu}\varphi)(t_{\rho}\gamma^{\mu}t_{r})$			$Q_{a4}^{(0)}$	$(\delta_g \gamma_s T^A u_r)(\bar{d}_i \gamma^\mu T^A d_i)$	$Q_{gk}^{(1)}$	$(q_i\gamma_i q_i)(\tilde{d_i}\gamma^{\mu}d_i)$	
I CP NP THE	9,0	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	$Q_{c\sigma}$	$(l_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{qt}^{(s)}$	$(\varphi^{I}iD_{\mu}^{I}\varphi)(l_{p}\tau^{I}\gamma^{\mu}l_{r})$					$Q_{nl}^{(0)}$	$(\bar{q}_{\mu}\gamma_{\mu}T^{A}q_{\nu})(\bar{d}_{a}\gamma^{\mu}T^{A}d_{i})$	
+ X: Y, y, y, p+, +, + 2, p - V(0)	$Q_{\sqrt{N}}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I}\nu\nu$	$V_{\mu\nu}^{I}W^{I}\nu^{\nu} = Q_{\mu\Omega} = (\bar{q}_{\mu}\sigma^{\mu\nu}T^{A}u_{\nu})\tilde{\varphi}G^{A}_{\mu\nu} = Q_{\mu\nu} = (\varphi^{\dagger}i\tilde{D}_{\mu}\varphi)(\bar{e}_{\mu}\gamma^{\mu}e_{\nu})$ (<i>LR</i>)(<i>B</i>)		(RL) and (LR)(LR)	B-violating							
	$\begin{array}{c} Q_{q\overline{R}} & \varphi \\ Q_{qR} & \eta \end{array}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I}\mu\nu$	Q_{nR} Q_{nR}	$(\bar{q}_{p}\sigma^{\mu\nu}u_{r})\tau^{I}\bar{\varphi}W^{I}_{\mu\nu}$	$Q_{qq}^{(1)} = Q_{qq}^{(2)}$	$(\varphi^{\dagger}_{i} \tilde{D}_{\mu} \varphi)(q_{\nu} \gamma^{*} q_{\nu})$	Quely Quilt	$(\overline{l}(e_r)(\overline{d}, q^{\dagger}))$	Que	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{\alphab}\left[(d^{\alpha}_{\alpha})\right]$	"Cu [#]]	$[(q_{i}^{ij})^{T}Cl_{i}^{k}]$	
		$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$		$(\bar{q}_{\mu}\sigma^{\mu\nu}u_{\nu})\widetilde{\varphi} B_{\mu\nu}$		$(\varphi^{\dagger}i D^{I}_{\mu} \varphi)(\bar{q}_{\mu}\tau^{I}\gamma^{\mu}q_{r})$		$(\hat{q}_{i}^{i}v_{r})v_{ii}(\hat{q}_{i}^{k}d_{l})$	Que	$e^{\alpha\beta\gamma} \epsilon_{\pm} [(q_{\mu}^{\alpha j})]$	$[TCq_r^{(0)}][(u)]^TCv_0]$		
	$Q_{\mu B}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu\nu} B^{\mu\nu}$	Q_{dG}	$(\bar{q}_{\rho}\sigma^{\rho a}T^{A}d_{r})\varphiG^{A}_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}(\vec{D}_{\mu} \varphi)(\bar{u}_{\rho}\gamma^{\mu}u_{\tau})$	Q ^{3N}	$\langle \hat{q}_i^2 T^A v_i \rangle \varepsilon_B \langle \hat{q}_i^2 T^A d_i \rangle$	$Q_{20}^{(1)}$	E337 E 41 Fem [(g2)	TCE	*] [(q?**) ⁷ CI?]	
	Q_{qWB}	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p\sigma^{\mu\nu}d_r)\tau^I\varphiW^I_{\mu\nu}$	Q_{qd}	$(\varphi^{\dagger}i \overset{a}{D}_{\mu} \varphi)(\tilde{d}_{p} \gamma^{\mu} d_{r})$	$Q_{logs}^{(2)}$	$(\bar{l}_{\mu}^{i}c_{\nu})e_{\mu}(\bar{q}_{\mu}^{k}a_{1})$	$Q_{\rm em}^{\rm SN}$	$\varepsilon^{[1]} = \varepsilon^{\alpha \theta \gamma} (\tau^{J} \varepsilon)_{jk} (\tau^{J} \varepsilon)_{cut}$		$[(q_{r}^{cj})^T C q_{r}^{ih}] [(q_{r}^{cm})^T C l_{l}^{n}]$	
	QUER	$\varphi^{l}\tau^{l}\varphi \widetilde{W}^{l}_{\mu\nu}B^{\mu\nu}$	Q_{d3}	$(\bar{q}_{\mu}\sigma^{\mu\nu}d_{\nu})\varphi B_{\mu\nu}$	Que	$i(\hat{\varphi}^{\dagger}D_{\mu}\varphi)(\hat{u}_{\mu}\gamma^{\mu}d_{r})$	$Q_{logs}^{(2)}$	$(\bar{p}_{\rho}\sigma_{\mu\nu}e_{\nu})e_{\mu}(\bar{q}^{\mu}_{\mu}\sigma^{\mu\nu}u_{\ell})$	Que	$e^{\alpha\beta\gamma} \left[(d^{\alpha}_{\mu})^{T} \right]$	Cu ²]	$(\mathbf{s}_i^*)^T C c_i$	

- Write down all possible (non-redundant) dimension-6 operators ...
- 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3 generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso, Jenkins, Manohar, Trott. (See also [arXiv:2005.00008] Li, Ren, Shu, Xiao, Yu, Zheng, [arXiv:2005.00059] Murphy for d8 basis.)
- A full global fit with all measurements to all operator coefficients?
 - ▶ We usually only need to deal with a subset of them, *e.g.* ~ 20-30 parameters for **Higgs and electroweak** measurements.
- Do a global fit and present the results with some fancy bar plots!

Jiayin Gu (顾嘉荫)

Higgs + EW, Results from the Snowmass 2021 (2022) study

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

Jiayin Gu (顾嘉荫)

Fudan University

6

- Without good Z-pole measurements, the *eeZh* contact interaction may have a significant impact on the Higgs coupling determination.
- Current (LEP) Z-pole measurements are not good enough for CEPC/FCC-ee Higgs measurements!
 - A future Z-pole run is important!
- ► Linear colliders (with beam polarizations) suffer less from the lack of a Z-pole run.

e

Top operators with $e^+e^- ightarrow tar{t}$

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

Jiayin Gu (顾嘉荫)

Fudan University

Many studies on SMEFT global fits!

Energy vs. Precision

- Many EFT contributions have energy enhancements! (~ ^{E²}/_{Λ²} from dim-6 operators).
- Hadron colliders
 - High energy.
 - Low statistics at the high energy tails.
 - If *E* ~ Λ, the EFT interpretation could be problematic...
- Lepton colliders
 - High precision, relatively low energy.
 - ► High precision ⇒ E ≪ Λ Ideal for the EFT interpretation!
- Energy and Precision? (muon colliders?)

Fudan University

Jiayin Gu (顾嘉荫)

We know very little about the Higgs potential!

- To know more about the Higgs potential, we need to measure the Higgs self-couplings (hhh and hhhh couplings).
- The $(H^{\dagger}H)^3$ operator (O_6) can modify the Higgs self-couplings.
- The $\frac{1}{2} (\partial^{\mu} |H|^2)^2$ operator (O_H) modifies all Higgs couplings.
- ▶ We can add the triple Higgs coupling, or *c*₆, in the global SMEFT framework.

Probing the triple Higgs coupling at Hadron colliders

- HH measurements (tree level)
 - $\blacktriangleright \lesssim 50\%$ at HL-LHC.
 - $\lesssim 5\%$ at a 100 TeV collider.
 - Robust under the global-fit framework.
- Single H measurement (one loop)
 - The triple Higgs coupling contributes to single H processes at one loop. [1312.3322] Mccullough, [1607.04251] Degrassi et al.
 - ~ 100% precision from an exclusive fit (assuming everything else is SM-like).
 - Global fits gives much worse bounds!

Triple Higgs coupling at one-loop order at lepton colliders

[arXiv:1711.03978] Di Vita, Durieux, Grojean, JG, Liu, Panico, Riembau, Vantalon

$$\begin{split} & \kappa_{\lambda} \equiv \frac{\lambda_{hhh}}{\lambda_{hhh}^{\rm SM}}, \\ & \delta \kappa_{\lambda} \equiv \kappa_{\lambda} - 1 = \mathbf{C}_{6} - \frac{3}{2}\mathbf{C}_{H} \\ & \text{with } \mathcal{L} \supset - \frac{\mathbf{C}_{6}\lambda}{v^{2}} (H^{\dagger}H)^{3}. \end{split}$$

- One loop corrections to all Higgs couplings (production and decay).
- 240 GeV: hZ near threshold (more sensitive to δκ_λ)
- at 350-365 GeV:
 - WW fusion
 - hZ at a different energy
- h → WW*/ZZ* also have some discriminating power (but turned out to be not enough).

Jiayin Gu (顾嘉荫)

Triple Higgs coupling from SMEFT global fits

Runs at two different energies (240 GeV and 350/365 GeV) are needed to obtain good constraints on the triple Higgs coupling in a global fit!

Triple Higgs coupling from SMEFT global fits

[2412.13130] Blondel, Grojean, Janot, Wilkinson (plots made by me)

▶ Precision reach on the triple Higgs coupling as a function of the luminosities, assuming measurement precision scales with $1/\sqrt{N}$.

Jiayin Gu (顾嘉荫)

More loop contributions?

[2406.03557] Asteriadis, Dawson, Giardino, Szafron

► The $e^-e^+t\bar{t}$ 4-fermion operators may not be well constrained, and can also contribute to the Higgs processes at one loop.

Jiayin Gu (顾嘉荫)

- We have no idea what is the new physics beyond the Standard Model.
- One important direction to move forward is to do precision measurements of the Standard Model processes.
 - HL-LHC is ok, but a future lepton collider is better!
 - SMEFT is a good theory framework (but is not everything).
 - Expand the theory framework?
 - Loop contributions, dimension-8 operators, HEFT ...
- The triple Higgs coupling
 - LHC: The HH measurement is robust in the global SMEFT framework.
 - Lepton colliders: Very good reaches from single *H* measurements, but the interpretation requires a more careful treatment.

Jiayin Gu (顾<u>嘉荫)</u>

Conclusion

setting limits on Wilson cofficients

probing new physics indirectly

backup slides

Jiayìn Gu (顾<u>嘉荫</u>)

Higgs Couplings in SMEFT Global Fits

Fudan University

Triple Higgs coupling from global fits [arXiv:1711.03978]

$$\begin{array}{l} O^1_{\varphi q} \equiv \frac{y_1^2}{2} ~~ \bar{q} \gamma^\mu q ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu \varphi, ~~ O_{uG} \equiv y_t g_s ~~ \bar{q} T^A \sigma^{\mu\nu} u ~ \epsilon \varphi^* G^A_{\mu\nu}, \\ O^3_{\varphi q} \equiv \frac{y_1^2}{2} ~~ \bar{q} \tau^I \gamma^\mu q ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu^I \varphi, ~~ O_{uW} \equiv y_t g_W ~~ \bar{q} \tau^I \sigma^{\mu\nu} u ~~ \epsilon \varphi^* W^A_{\mu\nu}, \\ O_{\varphi u} \equiv \frac{y_1^2}{2} ~~ \bar{u} \gamma^\mu u ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu \varphi, ~~ O_{dW} \equiv y_t g_W ~~ \bar{q} \tau^I \sigma^{\mu\nu} d ~~ \epsilon \varphi^* W^I_{\mu\nu}, \\ O_{\varphi ud} \equiv \frac{y_2^2}{2} ~~ \bar{u} \gamma^\mu d ~~ \varphi^T \epsilon ~~ i D_\mu \varphi, ~~ O_{uB} \equiv y_t g_Y ~~ \bar{q} \sigma^{\mu\nu} u ~~ \epsilon \varphi^* B_{\mu\nu}, \\ & O^1_{lq} \equiv \frac{1}{2} ~~ \bar{q} \gamma_\mu q ~~ \bar{l} \gamma^\mu l, \\ O_{lu} \equiv \frac{1}{2} ~~ \bar{u} \gamma_\mu u ~~ \bar{l} \gamma^\mu l, \\ O_{lu} \equiv \frac{1}{2} ~~ \bar{u} \gamma_\mu q ~~ \bar{l} \gamma^\mu l, \\ O_{eq} \equiv \frac{1}{2} ~~ \bar{q} \gamma_\mu q ~~ \bar{e} \gamma^\mu e, \end{array}$$

 $O_{eu} \equiv \frac{1}{2} \ \bar{u}\gamma_{\mu}u \ \bar{e}\gamma^{\mu}e,$

- Also need to include top dipole interactions and *eett* contact interactions!
- Hard to resolve the top couplings from 4f interactions with just the 365 GeV run.
 - Can't really separate $e^+e^- \rightarrow Z/\gamma \rightarrow t\bar{t}$ from

$$e^+e^-
ightarrow Z'
ightarrow tt$$

Jiayin Gu (顾嘉荫)

Top operators in loops (Higgs processes) [1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang

- $O_{tB} = (\bar{Q}\sigma^{\mu\nu}t) \tilde{\varphi}B_{\mu\nu} + h.c.$ is not very well constrained at the LHC, and it generates dipole interactions that contributes to the $h\gamma\gamma$ vertex.
- Deviations in $h\gamma\gamma$ coupling \Rightarrow run at $\sim 365 \text{ GeV}$ to confirm?

Top operators in loops (current EW processes)

[2205.05655] Y. Liu, Y. Wang, C. Zhang, L. Zhang, JG

	Experiment	Observables						
Low Energy	CHARM/CDHS/ CCFR/NuTeV/ APV/QWEAK/ PVDIS	Effective Couplings						
Z-pole		Total decay width Γ_Z						
		$\begin{tabular}{ c c c c } \hline Hadronic cross-section σ_{had} \\\hline \hline Ratio of decay width R_f \\\hline \hline Forward-Backward Asymmetry A_{FB}^{f} \\\hline \hline Polarized Asymmetry A_f \\\hline \end{tabular}$						
	LEP/SLC							
W-pole	LHC/Temptage /	Total decay width Γ_W						
	LIC/ Tevation/	W branching ratios $Br(W \rightarrow lv_l)$						
	LEI / SLC	Mass of W Boson M_W						
$ee \to qq$		Hadronic cross-section σ_{had}						
	LEP/TRISTAN	Ratio of cross-section R_f						
		Forward-Backward Asymmetry for $b/c A_{FB}^{f}$						
$ee \rightarrow ll$		cross-section σ_f						
	LEP	Forward-Backward Asymmetry A_{FB}^{f}						
		Differential cross-section $\frac{d\sigma_f}{dcos\theta}$						
$ee \rightarrow WW$	IFD	cross-section σ_{WW}						
	LEF	Differential cross-section $\frac{d\sigma_{WW}}{dcos\theta}$						

- Top operators (1-loop) + EW operators (tree, including bottom dipole operators)
- ► $e^+e^- \rightarrow f\bar{f}$ at different energies, $e^+e^- \rightarrow W^+W^-$.

Jiayin Gu (顾嘉荫)

Top operators in loops (current EW processes)

Good sensitivities, but too many parameters for a global fit...

Higgs Couplings in SMEFT Global Fits

Jiayin Gu (顾嘉荫)

Fudan University

Top operators in loops (future EW processes)

- Good sensitivities, but too many parameters for a global fit...
- It shows the importance of directly measuring $e^+e^- \rightarrow t\bar{t}$.

Jiayin Gu (顾嘉荫)

Fudan University

Probing dimension-8 operators?

- The dimension-8 contribution has a large energy enhancement (~ E⁴/Λ⁴)!
- It is difficult for LHC to probe these bounds.
 - Low statistics in the high energy bins.
 - Example: Vector boson scattering.
 - Λ ≤ √s, the EFT expansion breaks down!
- Can we separate the dim-8 and dim-6 effects?
 - Precision measurements at several different √s?

(A very high energy lepton collider?)

Or find some special process where dim-8 gives the leading new physics contribution?

Jiayin Gu (顾嘉荫)

The diphoton channel [arXiv:2011.03055] Phys.Rev.Lett. 129, 011805, JG, Lian-Tao Wang, Cen Zhang

- $e^+e^- \rightarrow \gamma\gamma$ (or $\mu^+\mu^- \rightarrow \gamma\gamma$), SM, non-resonant.
- ► Leading order contribution: dimension-8 contact interaction. $(f^+f^- \rightarrow \bar{e}_L e_L \text{ or } e_R \bar{e}_R)$

$$\mathcal{A}(f^+f^-\gamma^+\gamma^-)_{\rm SM+d8} = 2e^2 \frac{\langle 24\rangle^2}{\langle 13\rangle\langle 23\rangle} + \frac{a}{v^4} [13][23]\langle 24\rangle^2 \,.$$

Can probe dim-8 operators (and their positivity bounds) at a Higgs factory (~ 240 GeV)!

Jiayin Gu (顾嘉荫)

Fudan University